首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The transverse magnetic field (TMF) drives the vacuum arc to move along the surface of the contacts to prevent the local overheating and melting of the contact surfaces. The arcing process has great influence on the breaking capacity of short‐circuit current. In this paper, the arcing process between three types of TMF contacts was investigated. The transition process of an arc from the ignition stage to the diffusion stage was discussed. The transition moment, transition gap distance, and transition current were obtained. It was found that the axial magnetic field component of TMF contacts affected the arc transition process.  相似文献   

2.
We observed metal vapor arcs between separating electrodes in a demountable vacuum chamber using high speed photography. The peak values of the ac arc current half-wave ranged from 5 kA to 67 kA. Determination of the arc appearance as functions of arc current and electrode gap revealed that the arc can assume various types of columnar forms when the current at the instant of electrode separation exceeds 7 kA. The duration of the columnar arcing forms is influenced by axial magnetic fields differently for different field strengths. The graphical representation of the results allows prediction of the most probable arc appearance for a given set of operating parameters. A qualitative explanation of the various arc appearances on the basis of balances between magnetic and kinetic pressures is provided.  相似文献   

3.
A framing camera is used to photograph the vacuum arc between separating spiral-petal vacuum interrupter contacts. The rupture of the molten bridge between the contacts first leads to a high-pressure, transient arc column. This arc motion can become constricted for several milliseconds before it goes diffuse as the current decreases to zero. The current through the spiral contacts produces a magnetic field perpendicular to the arc column, which forces the arc to move outward and run along the periphery of the petals. Several vacuum arc modes occur during the half-cycle of high current arcing. Movies, gap-current curves, and arc voltage traces are used to study the development of the arc motion and how it is affected by the contact structure. This information is used to generate arc appearance diagrams in which the arc form and motion are correlated to instantaneous values of current and gap for a wide range of peak currents. Appearance diagrams are shown for two ranges of opening delay from current onset  相似文献   

4.
New methods have been developed for investigating vacuum arcs applied to the improvements of vacuum interrupter electrodes. Electrode surface temperature measurements reveal the anode surface melting condition at the current interruption and its influence on interruption capability, and a digital image processing technology gives us a clear understanding of the arcing phenomenon. Measurements and test results have shown the advantages of axial magnetic field electrodes in increasing the interruption capability of vacuum interrupters. It is confirmed that axial magnetic field electrodes are superior to other types of electrodes, and we believe that these new investigation methods promote the optimization of the electrode structure and the realization of higher voltage and current rating vacuum interrupters  相似文献   

5.
We have investigated the behavior of drawn vacuum arcs for several designs of axial magnetic field (AMF) contacts using high-speed digital photography and arc voltage measurements, As the peak current was increased, a gradual transition occurred in the arc appearance from a multiple cathode-spot arc to the high-current diffuse mode, and then to a high-current diffuse columnar mode. Two relatively simple models based on the literature are used to explain the results. The first is an empirical criterion for using the arc voltage behavior to determine the maximum arc current for which an AMF geometry can produce a high-current diffuse mode from the initial bridge column arc. The second model predicts the highest arc current that can be forced into a fully diffuse mode for given values of the AMF and the contact arcing radius. The predictions of these models are compared to our experimental and analytical results  相似文献   

6.
We have investigated the surface heating effects of drawn vacuum arcs for several industrial designs of axial magnetic field (AMF) contacts, using near infrared (IR) photography of the Cu-Cr arcing surfaces with an image-intensified charge-coupled device (CCD) camera and an IR pyrometer. This enables detailed contact temperature mapping immediately after a half-cycle of arc current. The very homogeneous temperature distribution observed at current zero stands in contrast to the visually nonhomogeneous high-current diffuse arc, which was studied in separately reported experiments using high-speed digital photography and arc voltage measurements. The peak temperature at current zero increased relatively linearly with the peak current IP, and reached well beyond the melting range. We combine the temperature maps with a heating model to determine the thermal sheath thickness after arcing and its dependence on IP. The results suggest that near the interruption limit of AMF contacts, the interaction of the stable high-current arc with the anode and cathode is dominated by processes induced by flowing liquid metal, which redistributes the heat input from the axially concentrated arc over most of the contact surface. Furthermore, the flow of liquid metal off the cathode and anode faces contributes to the overall contact erosion  相似文献   

7.
The plasma jet focusing and voltage distribution in the interelectrode gap of a vacuum arc with a ring anode and subjected to an axial magnetic field were studied theoretically. A two-dimensional model was developed based on the free plasma jet expansion into vacuum, and the steady-state solution of the fully ionized plasma in the hydrodynamic approximation was analyzed. It was found that the imposition of an axial magnetic field reduces the radial expansion of the plasma jet. The characteristic jet angle decreases from about 40° in the zero magnetic field case and approaches a value of about 20° with a 0.02 T magnetic field. The arc voltage consisting of the cathode drop, the plasma voltage drop, and anode sheath drop increased, with the imposition of a magnetic field, and decreased with the anode length. The model was compared to experimental measurements of the vacuum arc voltage behavior in an axial magnetic field, and good agreement was found  相似文献   

8.
9.
When an axial magnetic field is applied to a vacuum arc, the arc tends to be stabilized in its diffuse mode. A minimum arc voltage is found for a certain magnetic field. In this condition, interrupting current is significantly increased, and it is nearly proportional to the diameter of electrodes. About ten years ago, a practical axial magnetic field electrode was developed for vacuum circuit breakers. Since then, through various improvements in its structure, this electrode has been refined for practical application in vacuum circuit breaker interrupters. The application has successfully covered not only medium-voltage circuit breakers, but also high-voltage (84 kV), dc high-voltage, and high-current circuit breakers. In this paper, ten years experience in this area is described.  相似文献   

10.
When double‐break vacuum circuit breakers (VCBs) interrupt the fault current, the series arc will generate their individual magnetic fields in different breaks. The magnetic field in one break will influence the arc in another break if the magnetic field is strong enough or the two breaks are very close. In this case, an interactive magnetic field effect happens. This field is also called the bias magnetic field (BMF). BMF can cause anode erosion and affect the performance at current zero. The distribution of BMF and the optimal configuration of the double‐break VCBs were obtained by the electromagnetic field simulation using the Ansoft Maxwell software. Based on the simulated magnetic field data, in the experiments, the interaction between the series vacuum arcs in double‐break VCBs was equivalent to the interaction between a single vacuum arc and the magnetic field generated by a Helmholtz coil. A high‐speed CMOS camera was used to record the trajectory of the vacuum arc plasma under different BMFs with different types of contacts. The results show the BMF can increase the arc voltage, and the arc becomes unstable. When the BMF becomes stronger, the arc voltage increases, and the arc becomes more unstable. In addition, for different types of contacts, the development process of the arc and the influence level are different under the same BMF. For a Wan‐type transverse magnetic field (TMF) contact or strong BMF, metal sputtering is evident and anode erosion becomes serious. For a cup‐type axial magnetic field (AMF) contact, the influence of BMF on the series arc plasma in double‐break VCBs is less than that of the Wan‐type TMF contact. The results of this work may be helpful for the design of compact double‐break VCBs.  相似文献   

11.
大电流下多棒极型真空触发开关电弧特性   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种多棒极型真空触发开关(TVS),利用3对棒形电极的特殊结构来增大主触头间的燃弧面积,从而有效地提高TVS通流能力。结合真空电弧电压实验,阐述了多棒极型TVS在不同的大电流等级下的电弧发展变化过程。电弧电压的变化表现了多棒极型TVS中多通道并联燃弧及其在各通道之间的电弧转移过程,从而使得真空电弧维持在扩散态。由此开发的TVS样品实现了225 kA的峰值电流,单次转移电荷量45 C。  相似文献   

12.
Our new vacuum arc control technology SADE doubles the high current interruption capability of our conventional axial magnetic field technology. First, we describe the vacuum arc motion behavior recorded by a high speed charge-coupled device video camera. This arc behavior is closely related to axial magnetic field intensity. In particular, it depends on the profile of the externally generated axial magnetic field. The anode spot is likely to move to the highest magnetic field intensity. Second, we describe analytical results for concentration of vacuum arc at the anode side contact surface. This analysis implies the possibility of an ideal magnetic field profile and intensity for vacuum arc control. Finally, we describe experimental results for vacuum arc control compared with the physical and theoretical results mentioned above, and we show a practical electrode configuration for vacuum interrupters and its application in a high current interruption experiment  相似文献   

13.
We summarize a series of experiments in which we measured the distribution of ion currents leaving the interelectrode region of a vacuum arc with Cu electrodes. Ion currents were collected by an arrangement of cylindrical collectors surrounding the arcing space. A Helmholtz coil arrangement surrounding the arcing chamber generated the axial magnetic field. Arc currents ranged from 70 to 2400 A dc.  相似文献   

14.
The basic characteristics of a vacuum arc are investigated with a special electrode whose cathode consists of two half-disks. Pure copper is used for one part of the cathode, while copper, chromium, silver, and titanium are used for the other part. The tested arc current value is less than 4000 A, and the flux density of the axial magnetic field applied to a vacuum arc is less than 0.015 T. Experimental results show that the arc voltages of dual-part cathode electrodes are much lower than those of the individual pure metals, and that current sharing between the two parts is roughly determined by the arc current-voltage characteristics of the metals. The arc voltage of the dual-part cathode electrode is extremely low when the current is less than 1000 A  相似文献   

15.
In vacuum circuit breakers the post-arc current caused by the remaining ions and electrons in the contact gap is an indication of the residual ionization and its decay. It coincides with the formation of a positive space charge sheath in front of the new cathode, which grows toward the new anode. In a vacuum test chamber an arc (1.5-15 kA RMS) is drawn between high current electrodes of the spiral type. At different times after current zero a transient recovery voltage is applied across a separate pair of high voltage electrodes. In contrast to real circuit breakers, where the transient recovery voltage reappears between the arcing contacts, this separation allows the study of residual plasma free from the thermal stress and melting on the contact surfaces. From the post-arc current across these electrodes, in comparison with a mathematical model of sheath growth, the density of the charge carriers can be evaluated. Such values and their temporal decay are presented  相似文献   

16.
17.
Computational methods for evaluating the complex magnetic field structure in axial magnetic field type vacuum interrupters based on horseshoe electrode geometry are demonstrated. Arcing behavior can only be understood by incorporating an arcing model. An essentially low-current arcing model is capable of predicting the high-current arcing behavior and can be used to optimize the contact structure  相似文献   

18.
Experimental observations were conducted on the behavior of a high current vacuum arc on cylindrical electrodes in a radial magnetic field. The arc was sustained between the ends of two cylindrical Cu electrodes, 54-mm diam and 1.5-mm wall thickness separated by 5 mm. Arc current pulses with peak values in the range 4-15 kA with a half amplitude full width (HAFW) duration of 8 ms were investigated with radial magnetic fields proportional to the instantaneous current with proportionality constants of 4.0 and 6.5 × 10-6 T/A. The arcs were photographed simultaneously with a streak camera and by a high speed framing camera and the arc voltage was recorded on a digitizing transient recorder. The results indicated that the arc in this geometry, both with and without an imposed radial magnetic field, can be characterized by three development stages: a) arc formation, b) diffuse arc along the electrode perimeter, and c) simultaneous existence of several concentrated arc columns. When a radial magnetic field was imposed two changes were noted: 1) the arc appeared somewhat more distributed in that a greater number of constricted columns were observed, and they were distributed more evenly; and 2) the constricted columns moved in the J? × B? direction with velocities in the range 5-35 m/s.  相似文献   

19.
It is well known that axial magnetic fields (AMFs) can keep vacuum arc in diffuse mode at high current. According to our recent research and other published papers, it has been found that vacuum arc can be maintained in high-current diffuse mode at much higher current if nonuniform AMF is applied, that the axial magnetic field is higher at contact periphery than at center. The influence of spatial distribution of AMF on vacuum arc is mainly studied in this paper. Furthermore, two types of AMF contacts with new structures to generate nonuniform AMF are presented.  相似文献   

20.
By using ferromagnetic material around electrodes to generate strong nonuniform magnetic fields, vacuum arcs can be kept in well-defined diffuse mode or multiple arc mode. As a result, the arc voltage is low and stable, the current is confined in certain areas, and high interrupting ability and small size are achieved. The different arc modes for different electrodes, the arc voltage versus arc current for flat electrodes, horseshoe, and four-pole electrode, and the vacuum arc distribution are measured. The criteria of choice of electrode diameter and electrode distance are given  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号