首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
Alkylketene dimers (AKDs) and triglyceride waxes form fractal surfaces spontaneously and show super water-repellent property. Spontaneous formation of fractal structures on their surfaces takes place when the meta-stable crystalline phase of the waxes transforms to the thermodynamically stable form of crystal. The triglyceride waxes form the meta-stable alpha-phase in whole specimen when solidified from their melt. In the case of AKD, on the other hand, only a small portion of the specimen solidifies in the meta-stable form of crystal. The surface of the AKD, however, becomes fractal in the whole part. We have, thus, examined the fractal structure formation in the mixed wax systems in which one wax forms fractal surfaces and the other one does not. In the stearic acid/tristearin mixed system as a typical one, the super water-repellent fractal surfaces form in the higher composition region of tristearin than that of the eutectic point in their mixture.  相似文献   

2.
Alkylketene dimer (AKD), a kind of wax, has been known to form fractal surfaces spontaneously and show super water-repellency. Such formation of water-repellent and fractal surfaces was also found in this work for triglycerides. Since the crystal phase transitions of these waxes were well studied, we studied the formation of their fractal surfaces through contact angle measurements, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). From time-dependent contact angle measurements, it was found that the formation of super water-repellent surfaces with fractal structures occurred spontaneously also on the triglyceride surfaces at different temperatures. The freshly solidified triglyceride surfaces were almost transparent, and their initial contact angles of water were close to 110 degrees. The surfaces then became rough and clouded after being incubated for a certain time at a specified temperature. The super water-repellent surfaces were quite rough and showed fractal structures with the dimension of ca. 2.2 calculated from the scanning electron microscopic (SEM) images by the box-counting method. The phase transformation from a metastable state to a stable cystalline one after the solidification from the melt of triglycerides was clearly observed by DSC and XRD measurements. The fractal crystalline structures and the super water-repellency resulted from this phase transformation and the crystal growth. Ensuring the initial sample solidified into the metastable state and curing the surface at an appropriate temperature are key factors for the successful preparation of fractal triglyceride surfaces by the solidification method.  相似文献   

3.
以半干法制备了一系列壳聚糖不饱和羧酸盐--壳聚糖水杨酸盐(a1)、壳聚糖苯甲酸盐(a2)、壳聚糖肉桂酸盐(a3)壳聚糖丙烯酸盐(a4)和壳聚糖衣康酸盐(a5).用红外光谱和紫外光谱表征了该产品的结构,以凯氏定氮法测定了羧酸的结合量.结果表明壳聚糖和不饱和羧酸盐是通过壳聚糖上的氨基和羧酸中的羧基发生了成盐反应,羧酸的结合...  相似文献   

4.
DNA分子在气液界面的组装相变特性及其LB膜结构研究   总被引:5,自引:0,他引:5  
戴树玺  张兴堂  杜祖亮  党鸿辛 《化学学报》2003,61(12):2013-2015
对十八胺与DNA在气液界面上组装及其相变过程进行了研究,利用AFM观察了不 同压力下转移的DNA复合LB膜结构。发现在低表面压时,DNA复合单分子膜表现为技 术发散的分形结构;随着压力的升高,DNA复合膜逐渐由紧密的网状排布结构变为 团聚的块状和团簇结构。表明通过调节膜压,可使膜内DNA分子的构象发生大的变 化,从而生成具有特定形态的二维纳米图案。这种具有特殊形态和结构的DNA LB膜 可望为合成新型生物纳米结构有序功能体系提供模板。  相似文献   

5.
We present the application of several homo- and heteronuclear 1D- and 2D-NMR techniques to assign the 1H-NMR chemical shifts of the dominant conformation of didemnin B ( 2 ; three different conformations in (D6)DMSO solution in the ratio 8:1:1) and its conformational analysis, as well as the solution conformation of didemnin A ( 1 ). The conformations were refined by restrained molecular-dynamics calculations using the GROMOS program and by MOMO, a novel personal-computer-based interactive molecular-graphics and molecular-mechanics package, using experimental distances (via a H…H pseudo potential function) as restraints. The solution structures of 1 and 2 obtained by GROMOS and MOMO calculations were compared with each other and related to the recently solved crystal structure of 2 . Focusing on the main conformer, the two kinds of the distance-restrained conformational calculations for 2 yielded a ‘solution structure’ close to the crystal structure. Almost all of the 40 restrained H…H distances coincided (within the estimated standard deviations) with those observed in the crystal structure. One more hydrogen bond was detected in solution involving the lactoyl OH group (disordered in the crystal structure) and the dimethyltyrosine (Me2Tyr5) carbonyl O-atom. The macrocyclic ring system in the modeled solution structure of 1 exhibited a topology close to those of the solution and crystal structures of 2 . The main difference between 1 and 2 could be traced back to a significant change in the Ψ angle of the N-methyl-D-leucine (MeLeu7) residue. In 1 , the N-methyl moiety of MeLeu7 points inward within the macrocyclic ring toward the 1st and Hip region. We also tested the suitability of structures obtained from NMR data as ‘search fragments’ in the ‘Patterson search approach’ of crystal-structure analysis. It proved possible to resolve the crystal structure of 2 a posteriori with the Patterson search program PATSEE, in this way.  相似文献   

6.
1. INTRODUCTION The very latest subject of physics to surface in biology is the photonic crystal, which is ordered, subwavelength structured material capable of controlling the propagation of light in the similar manner as which atomic crystal control electrons [1,2]. Due to the application of the photonic crystal in laser, integrated optical circuit, it attracted great attention in the past decade. Photonic crystals can be fabricated by microfabrication methods, holographic methods, and c…  相似文献   

7.
A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.  相似文献   

8.
用透射电子显微镜(TEM)研究了衬底和沉积速率对气相沉积在聚乙烯醇缩甲醛衬底上的Pd膜显微结构的影响,当衬底温度由高到低改变时,Pd膜结构由紧密岛向分形渐变,在233-253K时Pd膜具有分形结构,用Sandbox方法测量了其分维数,在相同温度的衬底上,沉积速率不同时,基分形的图样不同,研究表明,上述分形结构是稳定的,利用有边缘扩散的DLA模型了这些实验结果。  相似文献   

9.
Nanoscale structure intercrystalline interactions in fat crystal networks   总被引:2,自引:0,他引:2  
The functional attributes of fat-structured food products such as butter, margarine, chocolate, and ice cream are strongly influenced by the structure and physical properties of an underlying fat crystal network present in the material. Fat crystal networks are arranged in a hierarchical manner with characteristic and quantifiable nano and mesoscale structures. Recent studies carried out by our group have demonstrated that the formation of such a fat crystal network starts with the association of nanoplatelets at the lowest constitutional level. These nanoplatelets interact and aggregate via van der Waals's forces into larger fractal structures, which eventually form a 3-dimensional network responsible for the solid-like characteristics of the material. The purpose of this review is to summarize recent efforts in the characterization and quantification of these recently discovered crystalline nanoplatelets and to discuss the role of van der Waals interactions between them. In addition a brief discussion of previous fractal model will be presented. The new experimental findings on the nanostructural level will then be used to validate our fractal structural–mechanical model of fats (Marangoni, 2000). These new insights will contribute to our knowledge of the nature of fat crystal network in plastic fats at different length scales and the relationship of these structural characteristics to the function and properties of fats.  相似文献   

10.
Three‐dimensional fractal structure of the electrodeposited cadmium layer was investigated. The results suggested that the fractal growth begin with nanometer scale aggregate within which the atoms arrange in hexagonal close‐packed lattice (the normal cadmium lattice). The fractal structure is correlated to the current density. The higher the current density is, the larger the size of fractal growth will be. Fractal structures can emerge in both the complete diffusion‐limited process and the combination‐limited process of the electrochemical reaction and diffusion. The fractal structure obtained from the simple hydrated ion electrolyte is different from that obtained from the complex ion electrolyte, which indicates they grow in different modes. The fractal dimensionality of deposit from the simple hydrated ion electrolyte is 2.592, smaller than that (2.608) from the complex ion electrolyte.  相似文献   

11.
Bis-(4-stearoylaminophenyl) ether (BSADE) can aggregate and self-assemble in water. Transmission electron microscopy (TEM) indicated that the morphology of BSADE aggregates in water was entanglement and thin fiber-like, and that a three dimensional network structure was formed. Water molecules were entrapped in this three dimensional network structure and formed a new type of condensed system (so-called water molecular gel). Water molecular gel is a typical mesoporous material which can be characterized by the fractal dimension D. Using gas adsorption method along with measurement of porosity and specific surface area, the fractal dimension D of the complicated pores was 2.1-2.2 for this water molecular gel. Using viscosity method and the Cayley fractal tree, the fractal dimension D of the fiber-like three dimensional network was determined to be 1.98. The formation process of water molecular gel can be described as nucleation followed by a repeated growing and branching cycle.  相似文献   

12.
The structure and binding energies of mercury telluride crystals encapsulated within single walled carbon nanotubes (SWNTs) have been studied using density functional theory. The energies of three different pseudo one‐dimensional crystals of HgTe with 4:4, 3:3, and 2:2 coordination are compared. The initial structure for the 4:4 crystal was a 2 × 2 cubic motif derived from rock salt bulk structure, the 3:3 crystal corresponds to a novel structure found when HgTe was intercalated within SWNTs, and the 2:2 crystal is a chain motif derived from cinnabar (HgS) bulk structure. The isolated 3:3 crystal was found to be the most thermodynamically stable of the three structures. Calculations were performed on the 3:3 crystal inserted into three different SWNTs, (15, 0), (9, 9), and (17, 0), in order to investigate the perturbations on the molecular and electronic structure of the crystal and the SWNT, and the energy of formation of the HgTe@SWNT composites. The calculated structures are in good agreement with the experimental high resolution transmission electron microscopy images of the HgTe@SWNT composite. The calculated binding energies and density of states show that the interaction between nanotubes and the HgTe crystals is noncovalent. Since the energy difference of the “free” 4:4 and 3:3 structures is small and of the order of magnitude of the binding energies with the nanotubes, we carried out calculations on 4:4 HgTe structure inserted in to two different SWNTs, (15, 0) and (17, 0). The calculated binding energies show that, when the 4:4 structure is inserted into the smallest tube, the resultant composite has an energy comparable to the 3:3 structure, suggesting that this polymporph may also be found experimentally. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

13.
制备条件对ZrO2晶相结构的影响   总被引:4,自引:0,他引:4  
李文  殷元骐 《分子催化》1999,13(4):275-276
不同晶体结构ZrO2的制备探索表明,二氧化锆的晶体结构极大地依赖于它的制备条件,从同一种原料可以制备出不同晶体结构的二氧化锆,也可以从不同的锆直产制备出同一种晶体结构的二氧化锆。  相似文献   

14.
A photographic technique coupled with image analysis was used to measure the size and fractal dimension of asphaltene aggregates formed in toluene-heptane solvent mixtures. First, asphaltene aggregates were examined in a Couette device and the fractal-like aggregate structures were quantified using boundary fractal dimension. The evolution of the floc structure with time was monitored. The relative rates of shear-induced aggregation and fragmentation/restructuring determine the steady-state floc structure. The average floc structure became more compact or more organized as the floc size distribution attained steady state. Moreover, the higher the shear rate is, the more compact the floc structure is at steady state. Second, the fractal dimensions of asphaltene aggregates were also determined in a free-settling test. The experimentally determined terminal settling velocities and characteristic lengths of the aggregates were utilized to estimate the 2D and 3D fractal dimensions. The size-density fractal dimension (D(3)) of the asphaltene aggregates was estimated to be in the range from 1.06 to 1.41. This relatively low fractal dimension suggests that the asphaltene aggregates are highly porous and very tenuous. The aggregates have a structure with extremely low space-filling capacity.  相似文献   

15.
A crystal structure prediction (CSP) study of three small, rigid and structurally related organic compounds (differing only in the position and number of methyl groups) is presented. A tailor‐made force field (TMFF; a non‐transferable force field specific for each molecule) was constructed with the aid of a dispersion‐corrected density functional theory method (the hybrid method). Parameters for all energy terms in each TMFF were fitted to reference data generated by the hybrid method. Each force field was then employed during structure generation. The experimentally observed crystal structures of two of the three molecules were found as the most stable crystal packings in the lists of their force‐field‐optimised structures. A number of the most stable crystal structures were re‐optimised with the hybrid method. One experimental crystal structure was still calculated to be the most stable structure, whereas for another compound the experimental structure became the third most stable structure according to the hybrid method. For the third molecule, the experimentally observed polymorph, which was found to be the fourth most stable form using its TMFF, became the second most stable form. Good geometrical agreements were observed between the experimental structures and those calculated by both methods. The average structural deviation achieved by the TMFFs was almost twice that obtained with the hybrid method. The TMFF approach was extended by exploring the accuracy of a more general TMFF (GTMFF), which involved fitting the force‐field parameters to the reference data for all three molecules simultaneously. This GTMFF was slightly less accurate than the individual TMFFs but still of sufficient accuracy to be used in CSP. A study of the isostructural relationships between these molecules and their crystal lattices revealed a potential polymorph of one of the compounds that has not been observed experimentally and that may be accessible in a thorough polymorph screen, through seeding, or through the use of a suitable tailor‐made additive.  相似文献   

16.
Abstract

The ordered arrangement of molecules and ions in crystal structures is the result of non-bonded interactions, albeit modulated in the crystalline state by random crystal packing forces. Each individual crystal structure gives but a snapshot of these interactions. It is only by examining a large number of structures containing similar molecules or functional groups that we can gain any generalized knowledge about the rules governing molecular interactions. Indeed if we knew these rules it should be possible to predict crystal structures likely to be formed by specific molecules, whereas at present each new crystal structure requires a de novo experimental solution. We would also be able to evaluate the relative contribution of non-bonded and crystal packing forces and extrapolate to the interactive behaviour of molecules in solution and, most importantly, in the environments encountered in biological systems. A key to these studies is the Cambridge Structural Database (CSD) system where experimental results from over 100,000 individual structure determinations are stored in computer readable form. The system also provides the computational tools needed to locate the relevant structures and analyse the numerical data using a variety of statistical techniques. This paper describes the latest Version of the CSD system (Version 5) released Autumn 1992. The use of the system is illustrated by several examples, such as the preferential interaction of certain functional groups, the study of the C—H…O bond and drug-DNA interactions.  相似文献   

17.
The lattice structure and in plane molecular organization of Langmuir monolayer of amphiphilic material is usually determined from grazing incidence X-ray diffraction (GIXD) or neutron reflectivity. Here we present results of a different approach for determination of monolayer lattice structure based on application of fractal analysis and percolation theory in combination with Brewster angle microscopy. The considerations of compressibility modulus and fractal dimension dynamics provide information on percolation threshold and consequently by application of percolation theory on the lattice structure of a monolayer. We have applied this approach to determine the monolayer lattice structures of single chain and double chain lipids. The compressibility moduli were determined from measured π-A isotherms and fractal dimensions from corresponding BAM images. The monolayer lattice structures of stearic acid, 1-hexadecanol, DPPC and DPPA, obtained in this way conform to the corresponding lattice structures determined previously by other authors using GIXD.  相似文献   

18.
Single crystals of the new ternary carbides Ta4AlC3 and Ta3AlC2 were synthesized from molten aluminum and characterized XRD, EDX, and WDX measurements. Crystal structures were refined for the first time on the basis of single-crystal data. Both compounds crystallize in a hexagonal structure with space group P63/mmc and Z = 2. The lattice constants are a = 3.1131(3) A and c = 24.122(3) A for Ta4AlC3 and a = 3.0930(6) A and c = 19.159(4) A for Ta3AlC2. The crystal structures can be explained with a building block system consisting of two types of partial structures. The intermetallic part with a composition TaAl is a two layer cutting of a hexagonal closest packing. The carbide partial structure is a fragment of the binary carbide TaC (NaCl type). It consists of three (Ta4AlC3) or two layers (Ta3AlC2) of CTa6-octahedra linked via common corners and edges. Both compounds are members of the series (TaC)nTaAl. The crystal quality of Ta3AlC2 is improved by using a Al/Sn melt for crystal growth leading to small quantities of Sn in the crystal: Ta3Al1-xSnxC2, x approximately 0.04. On the basis of reliable data a detailed discussion of structural parameters is possible. According to the building principle structure models can be developed for the whole series (MX)nMM' including coordinates for all atoms.  相似文献   

19.
The room-temperature structure of DNA-linked gold nanoparticle aggregates is investigated using a combination of experiment and theory. The experiments involve extinction spectroscopy measurements and dynamic light scattering measurements of aggregates made using 60 and 80 nm gold particles and 30 base-pair DNA. The theoretical studies use calculated spectra for models of the aggregate structures to determine which structure matches the observations. These models include diffusion-limited cluster-cluster aggregation (DLCA), reaction-limited cluster-cluster aggregation (RLCA), and compact (nonfractal) cluster aggregation. The diameter of the nanoparticles used in the experiments is larger than has been considered previously, and this provides greater sensitivity of spectra to aggregate structure. We show that the best match between experiment and theory occurs for the RLCA fractal structures. This indicates that DNA hybridization takes place under irreversible conditions in the room-temperature aggregation. Some possible structural variations which might influence the result are considered, including the edge-to-edge distance between nanoparticles, variation in the diameter of the nanoparticles, underlying lattice structures of on-lattice compact clusters, and positional disorders in the lattice structures. We find that these variations do not change the conclusion that the room-temperature structure of the aggregates is fractal. We also examine the variation in extinction at 260 nm as temperature is increased, showing that the decrease in extinction at temperatures below the melting temperature is related to a morphological change from fractal toward compact structures.  相似文献   

20.
Summary: We have synthesized three kinds of titanylphthalocyanines with different crystal structures (TiOPcs; PcT2000R, PcT3000R, and PcT1100S) and analyzed their crystal structure by X-ray Diffraction (XRD), Fourier transfer IR (FT-IR) spectroscopy, and Transmission Electron Microscope (TEM). From experimental results, we have confirmed that PcT2000R was estimated to be alpha-form; PcT3000R was beta-form, and PcT1100S was gamma-form. Quasi-solid state dye-sensitized solar cell (DSSC) devices were prepared with a polymer electrolyte using TiOPcs as a co-adsorbent. The DSSC device using TiOPc has higher power conversion efficiency than without TiOPc, due to decrease of electron transfer distance by the interface adsorption between TiO2 film and polymer electrolyte. Also, we have studied the effects of the crystal structures of TiOPcs on the property of polymer electrolyte and the performance of the DSSC device. The best result on power conversion efficiency was 7.13% in DSSC device using PcT3000R having its highest stability. The open-circuit voltage (Voc) was 0.69 V, the short-circuit current density (Jsc) was 20.02 mA/cm2, and the Fill Factor (FF) was 0.52. the addition of TiOPc as co-adsorbent is useful for improve to the performances of DSSC devices such as Voc, Jsc, and power conversion efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号