首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
 The properties of polymer films prepared from latex dispersions are influenced by the drying or film formation process. In order to investigate this process, various systems of aqueous latex dispersions were dried until a specific solid content was reached. The samples investigated were based on vinyl acetate, vinyl acetate/ethylene and pure acrylics employing different surfactants and polyelectrolytes as stabilisers of the dispersions. The role of water in these partially dried films was investigated using 1H and 2H solid-state NMR spectroscopy. Different types of water could be distinguished in the spectra. The drying latex films were found to contain interfacial external water, water at ionic and nonionic groups at surfactants in the polymer/water interface and also water inside the swollen polymer. These different types of water were examined separately using various NMR techniques. Received: 22 October 1999/Accepted in revised form: 19 November 1999  相似文献   

2.
Thin films of latex dispersions containing particles of high glass transition temperature generally crack while drying under ambient conditions. Experiments with particles of varying radii focused on conditions for which capillary stresses normal to the film deform the particles elastically and generate tensile stresses in the plane of the film. Irrespective of the particle size, the drying film contained, simultaneously, domains consisting of a fluid dispersion, a fully dried packing of deformed spheres, and a close packed array saturated with water. Interestingly, films cast from dispersions containing 95-nm sized particles developed tensile stresses and ultimately became transparent even in the absence of water, indicating that van der Waals forces can deform the particles. Employing the stress-strain relation for a drying latex film along with the well-known Griffith's energy balance concept, we calculate the critical stress at cracking and the accompanying crack spacing, in general agreement with the observed values.  相似文献   

3.
Poly(vinyl acetate-co-ethylene) latex dispersions are prepared and their films investigated with a focus on the effect of composition upon redispersion. Films of dispersions containing sufficient amounts of poly(vinyl alcohol) (PVA) can be redispersed in water. This property is lost in the presence of surfactant, a fact which suggests a procedure to control film formation. It is demonstrated that redispersion is due to a PVA-membrane which separates the particles. Loss of redispersibility in the presence of surfactant proceeds with the breakup of the membranes and a corresponding change of film properties. Experimental data is provided by light microscopy, mechanical testing, and TEM in conjunction with a staining method new to the field. The hypothesis is developed that interaction with surfactant leads to imperfect PVA-membranes that are no longer able to prevent latex polymer interdiffusion. Fluorescence correlation spectroscopy demonstrates the formation of surfactant micelles, as well as the simultaneous adsorption and aggregation of PVA onto the micelles. It is concluded that the competing surface of the surfactant micelles traps enough PVA to cause thinning and fragmentation of the membranes surrounding the particles, which enables interdiffusion of latex polymer. This effect can be used to convert the system from one forming a redispersible coating to one forming a nonredispersible (permanent) film. Copyright 2000 Academic Press.  相似文献   

4.
The stability of polymeric dispersions is a property of practical importance and hence, the search for an optimized strategy to equip polymer dispersions with sufficient stability is a matter of continuous research during the last years. The kernel is to reach a sufficient stability, as it is required during polymerization, conditioning, or storage and to allow coagulation or coalescence of particles when it is needed, such as during separation of polymer from latex or during film formation. In this study, the emulsion homopolymerization system containing vinyl acetate, potassium persulfate, new polymeric surfactant, NaHCO3 and water was studied in the classical glass emulsion polymerization reactor. The effects of new polymeric emulsifier on the physicochemical properties of obtained vinyl acetate latex properties were investigated depending on vinyl acetate percentage in homopolymerization.  相似文献   

5.
The physical forces causing deformation of latex particles during the film formation process have been witley studied. However, the forces resisting particle deformation are still poorly characterized. It is clear that the extent of particle deformation is dependent on the viscoelastic nature of the polymer. In an emulsion, the latex particles will normally contain water, surfactants and “free” monomers which lead to plasticization of the polymer. Although this effect has been recognized, so far it has been studied only on films that had been dried and then partially or completely swollen by water. In this work, plasticization of the emulsion polymers by water and co-solvent has been quantified via differential scanning calorimetry investigation directly on the aqueous latex dispersions. More specifically, the plasticizing effect of water on VeoVa/vinyl acetate copolymer latices and its influence on minimum film-forming temperature (MFFT) has been studied. A linear correlation has been found between Tg and MFFT for the wet latices. This new direct method should help to improve our understanding of the forces resisting latex film formation. Additionally, the homogeneous distribution of the hydrophobic and hydrophilic monomers (VeoVa and vinyl acetate respectively) in the latex particles was verified via a 13C-NMR (nuclear magnetic resonance) study performed directly on the latices. This study confirmed that no significant core/shell type of morphology had influenced latex film formation.  相似文献   

6.
Lateral non-uniformities in surfactant distribution in drying latex films induce surface tension gradients at the film surface and lead to film thinning through surfactant spreading. Here we investigate the influence of the surfactant driven to the air-water interface, during the early stages of latex film drying, on the film thinning process which could possibly lead to film rupture. A film height evolution equation is coupled with conservation equations for particles and surfactant, within the lubrication approximation, and solved numerically, to obtain the film height, particle volume fraction, and surfactant concentration profiles. Parametric analysis identifies the effect of drying rate, dispersion viscosity and initial particle volume fraction on film thinning and reveals the conditions under which films could rupture. The results from surface profilometry conform qualitatively to the model predictions.  相似文献   

7.
Immiscible polymer blend films were formed by air drying aqueous dispersions containing mixtures of a high-Tg latex, poly(methyl methacrylate), and a film-forming low-Tg latex, poly(butyl methacrylate-co-butyl acrylate). Fluorescence energy transfer experiments were used to characterize the interfaces in these films, in which one component was labeled with a donor dye and the other with an acceptor. The quantum efficiency of energy transfer (ΦET) between the donors and acceptors is influenced by the interfacial contact area between the two polymer phases. As the amount of soft component in the blend is increased, ΦET approaches an asymptotic value, consistent with complete coverage of the hard polymer surface with soft polymer. This limiting extent of energy transfer is very sensitive to the total surface area in the film, with correspondingly more energy transfer at constant volume fraction for small hard particles. Some of the details of the energy transfer are revealed through a fluorescence lifetime distribution analysis. The presence of ionic surfactant (sodium dodecyl sulfate) in the dispersion from which the latex blend film is prepared reduces the cross-boundary energy transfer by 30%, which implies that in these films the surfactant decreases the interfacial contact. After annealing the surfactant-free blends above 100°C, we observe an increase in energy transfer, consistent with a broader interface between the two polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1115–1128, 1998  相似文献   

8.
Thermogravimetric analysis and a synchrotron small-angle X-ray scattering technique were employed to characterize the structural evolution of a polymeric latex dispersion during the first three stages of film formation at different temperatures and relative humidities. Three intermediate stages were identified: (1) stage I*, (2) stage I**, and (3) stage II*. Stage I* is intermediate to the conventionally defined stages I and II, where latex particles began to crystallization. The change of drying temperature affects the location of the onset of ordering, whereas relative humidity does not. Stage I** is where the latex particles with their diffuse shell of counterions in the fcc structure are in contact with each other. The overlapping of these layers results in an acceleration of the lattice shrinkage due to a decrease of effective charges. Stage II* is where the latex particles, dried well above their T(g), are deformed and packed only partially during film formation due to incomplete evaporation of water in the latex film. This is because of a rapid deformation of the soft latex particles at the liquid/air interface so that a certain amount of water is unable to evaporate from the latex film effectively. For a latex dispersion dried at a temperature close to its minimum film formation temperature, the transition between stages II and III can be continuous because the latex particles deform at a much slower rate, providing sufficient surface area for water evaporation.  相似文献   

9.
单分散聚苯乙烯乳液高温成膜过程的形态观察   总被引:2,自引:0,他引:2  
单分散乳液指微粒具有相同化学组成、粒径及界面性质等特征的分散体系 ,因其颗粒均一 ,结构可调 ,赋予了其很多独特性质 ,广泛应用于计量、电子、生物、分析、医学、化工和信息等领域 .同时 ,单分散微粒体系作为研究原子或分子结晶过程的模型物 [1] ,在凝聚态物理中具有重要作用 .单分散乳液在一些条件下能排列成最大密堆积规整结构 ,从而赋予乳胶膜更优异的性能 [2 ] .因此 ,研究单分散乳液的成膜过程 ,在基础理论和实际应用中具有重要意义 .软的乳胶微粒玻璃化温度在室温附近 ,它们在常温下就可形变融合成膜 ,此时水蒸发速度较慢 ,乳液中…  相似文献   

10.
Nanosized polystyrene latexes with high polymer contents were obtained from an emulsifier-free process by the polymerization of styrene with ionic comonomer, nonionic comonomer, or both. After seeding particles were generated in an initial emulsion system consisting of styrene, water, an ionic comonomer [sodium styrenesulfonate (NaSS)] or nonionic comonomer [2-hydroxyethyl methacrylate (HEMA)], and potassium persulfate, most of the styrene monomer or a mixture of styrene and HEMA was added dropwise to the polymerizing emulsion over 6 h. Stable latexes with high polystyrene contents (≤25%) were obtained. The latex particle weight-average diameters were largely reduced (41 nm) by the continuous addition of monomer(s) compared with those (117 nm) obtained by the one-pot polymerization method. Latex particles varied from about 30 to 250 nm in diameters, whereas their molar masses were within 104 to 105 g/mol. The effect of the comonomer concentration on the number of polystyrene particles per milliliter of latex and the weight-average molar masses of the copolymers during the polymerization are discussed. The surface compositions of the latex particles were analyzed by X-ray photoelectron spectroscopy, which indicated that the surface of the latex particles was significantly enriched in NaSS, HEMA, or both. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1634–1645, 2001  相似文献   

11.
Cryogenic scanning electron microscopy (cryo-SEM) was used to investigate microstructure development of composite coatings prepared from dispersions of antimony-doped tin oxide (ATO) nanoparticles (approximately 30 nm) or indium tin oxide (ITO) nanoparticles (approximately 40 nm) and latex particles (polydisperse, D(v): approximately 300 nm). Cryo-SEM images of ATO/latex dispersions as-frozen show small clusters of ATO and individual latex particles homogeneously distribute in a frozen water matrix. In contrast, cryo-SEM images of ITO/latex dispersions as-frozen show ITO particles adsorb onto latex particle surfaces. Electrostatic repulsion between negatively charged ATO and negatively charged latex particles stabilizes the ATO/latex dispersion, whereas in ITO/latex dispersion, positively charged ITO particles are attracted onto surfaces of negatively charged latex particles. These results are consistent with calculations of interaction potentials from past research. Cryo-SEM images of frozen and fractured coatings reveal that both ceramic nanoparticles and latex become more concentrated as drying proceeds; larger latex particles consolidate with ceramic nanoparticles in the interstitial spaces. With more drying, compaction flattens the latex-latex particle contacts and shrinks the voids between them. Thus, ceramic nanoparticles are forced to pack closely in the interstitial spaces, forming an interconnected network. Finally, latex particles partially coalesce at their flattened contacts, thereby yielding a coherent coating. The research reveals how nanoparticles segregate and interconnect among latex particles during drying.  相似文献   

12.
Effect of ethoxylated nonyl phenol type non-ionic and alkyl sulfate type anionic surfactants on the film formation process of poly (vinyl acetate) and poly (vinyl acetate-acrylate) latexes are discussed. HLB value of non-ionic surfactant is shown to affect glass transition temperature, minimum film formation temperature and rate of film coalescence of vinyl acrylic latexes. Higher HLB non-ionic surfactant appears to be more compatible than the lower HLB ones with the fairly polar vinyl acrylic latex and form a well coalesced film. Presence of sodium lauryl sulfate in the latex is observed to result in incompatible regions on the latex film surface, typical of two phase morphology. Influences of surfactants on the film formation process in the polar vinyl acrylic latexes are compared and contrasted with the available data on the effects of surfactants in styrene butadiene latexes. The findings are discussed in terms of adsorption and interaction behavior of surfactants at polar vinyl acrylic latex surfaces and current theories of latex film formation mechanisms.  相似文献   

13.
Uneven distribution of surfactant in dried latex films can affect the final film properties such as its water-resistance, gloss, and adhesiveness. Therefore, it is important to understand the driving force for surfactant transport during drying. In this paper, the accumulation of surfactant on the surface of poly(styrene-co-butyl acrylate) latex is studied using Rutherford Backscattering (RBS) and compared with results from a model that is based on the diffusive transport of particles and surfactant. Experimentally, a 30-50 nm thick surface layer, rich in surfactant, is seen and the concentration in the bulk of the film, obtained from RBS, agrees, at least qualitatively, with the model predictions for two of the surfactants tested.  相似文献   

14.
Stable film-forming nanocomposite particles with diameters ranging from 120 to 300 nm, based on polybutylmethacrylate (PBMA) and cellulose whiskers in water dispersions, were successfully synthesized in one step through mini-emulsion polymerization. The nanocomposite dispersion with a solid content of 25 wt.% and up to 5 wt.% of nanofiller loading was prepared by in situ polymerization, in the presence of the whiskers using dodecylpyridinium chloride (DPC), as a cationic surfactant, and 2,2-azobis(isobutyronitrile) (AIBN), as initiator. The electrostatic interaction between the positively charged droplets and negatively charged whiskers ensured the anchoring of the nanofiller around the polymer particles. The ensuing dispersions were characterized by Dynamic Light Scattering (DLS), ζ-Potential Measurements, and Field-Emission Scanning Electron Microscopy (FE-SEM). After the film formation process, the nanocomposite film exhibits a high transparency, denoting the good dispersion of the whiskers throughout the matrix.  相似文献   

15.
Aqueous film coatings often contain some electrolytes, organic acids, and pigments to give functions of sustained release, time-controlled release, or protection against light. Additions of some electrolytes or organic acids into latex dispersion for an aqueous film coating affect its colloidal stability. We characterized the aqueous polymeric latexes used in the pharmaceutical industry by measuring zeta potential and particle size, and evaluated this colloidal stability using DLVO theory. Three polymethacrylate-based aqueous polymeric latexes, Eudragit L30D-55, Eudragit RS30D and Eudragit NE30D, having anionic, cationic, and neutral polymer, respectively, were used in this study. The Hamaker constant of the polymethacrylate-based latex was determined to be 6.35 x 10(-21) J, and the total potential energy of the latex dispersion was calculated. The total potential energy of interaction between pairs of latex particles changes by altering the salt concentration and pH. The experimental results of stability in the anionic and the cationic latex dispersions can be explained by the total interaction energies. However, the stabilization of the neutral latex did not match the calculated result. The steric interaction produced by the surfactant likely resulted in the stable dispersion of this latex.  相似文献   

16.
Ceramic nanoparticle/monodisperse latex coatings with a nanoparticle-rich surface and a latex-rich body were created by depositing aqueous dispersions of monodisperse latex, approximately 550 nm in diameter, and nanosized ceramic particles onto substrates and drying. On the top surface of the dried coating, the latex particles are closely packed with nanoparticles uniformly occupying the interstitial spaces, and along the cross section, nanoparticles fill the spaces between the latex particles in the near surface region; a compacted latex structure, nearly devoid of nanoparticles, lies beneath. Cryogenic scanning electron microscopy images of partially dried coatings at successive drying stages reveal two important steps in forming this structure: top-down consolidation of latex particles and accumulation of nanoparticles in interstitial spaces among latex particles near the surface. A systematic study of the effect of processing conditions, including nanoparticle concentration, nanoparticle size, latex glass transition temperature, and drying conditions, on the final microstructure was carried out. The unique microstructure described above forms when the monodisperse latex is large enough to create pore channels for the transport of nanosized particles and the drying conditions favor "top-down" as opposed to "edge-in" drying.  相似文献   

17.
Film formation from latex dispersions with varying concentrations of sodium dodecylsulfate (SDS) and sodium persulfate (NaPS) was studied with a sorption balance. The drying rate decreased significantly at a critical volume fraction of polymer (phi pc). Under constant drying conditions the phi pc varied due to differences in particle stabilization. In SDS containing samples, the droplets wetted larger areas, the film thicknesses decreased and, consequently, the initial evaporation rate was decreased. The decrease in the initial evaporation rate first continued with increasing SDS concentration but leveled off at an apparent critical micelle concentration (CMC). Samples containing NaPS had different types of film formation mechanisms with large variations in phi pc and the total drying time, which could be explained by differences in the electrostatic stabilization. For dialyzed dispersions containing no NaPS, phi pc was close to 0.7. In samples with medium high NaPS concentration a skin was formed at the air interface causing an early shift in the evaporation rate, resulting in 0.25相似文献   

18.
Brownian dynamics simulations of the filming process of a mixed polymer latex in the water evaporation stage were performed in order to explore the effect of surface potential on latex particle packing and distribution at a temperature far below the glass transitions of polymers in bulk. Polymer latex particles are modeled as spheres that interact via DLVO potential with various surface charge densities for emulsifier-free emulsion polymerized particles and dispersion polymerized particles. It is found that the distribution of modeled poly(methyl methacrylate) and polystyrene latex particles in the finally formed film exhibits a noticeable dependence of surface potentials of latex particles. When the difference of the surface potentials between binary mixed latex particles is small, the particles distribute randomly. In contrast, when the difference of the surface potentials between binary mixed latex particles is large, heterocoagulation occurs and the polymer latex in which the repulsive electrostatic potential is weak will form clusters in the film. The results are in agreement with laser confocal fluorescence microscopy observations of fluorescent dye labeled poly(methyl methacrylate) and polystyrene mixed latex films. The correlation between latex particles increases with increasing repulsive electrostatic potential, and the spatial order can be obtained at the end of the water evaporation stage. Copyright 2000 Academic Press.  相似文献   

19.
Latex films composed of fused polybutadiene (PB) and poly (vinyl pyrrolidone) (PVP) particles that contain no ionic, hydroxyl, or amino groups were swelled with lithium salt solutions to yield new polymer electrolyte materials. The latex particle consists of a nonpolar, rubbery core that contains the PB component and a polar, glassy shell that contains the PVP component. The particle core-shell morphology was retained in the solid state, after the latex dispersion medium was removed and the films dried at high temperatures, due to the high Tg of the PVP shell. The films swelled when immersed in lithium salt solutions, and ionic conductivity of swollen films was greater than 10-3 S/cm. Swelling and ionic conduction occurred only in the polar PVP component. Extraction of PVP occurred with extended swelling. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The present article describes the synthesis and emulsion copolymerization of a block-type amphiphilic poly(2-oxazoline) macromonomer possessing a polymerizable vinyl ester group. The macromonomer was synthesized by one-pot two-stage block copolymerization of 2-oxazolines using vinyl iodoacetate as initiator. 2-Methyl- and 2-n-butyl-2-oxazolines were employed for the construction of hydrophilic and hydrophobic segments, respectively. The surface activities evaluated by the surface tension of the macromonomer in water were fairly good. Emulsion copolymerization of vinyl acetate with the macromonomer was carried out. The macromonomer acted as a polymeric surfactant, as well as a comonomer. The resulting copolymer latex particles were spherical and their diameter was in the sub-micron range. The effects of the composition of the macromonomer on the emulsion copolymerization and the resulting latex particles were examined. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号