首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Nanostructured TiO2 thin films have been prepared through chemical route using sol-gel and spin coating techniques. The deposited films were annealed in the temperature range 400–1000°C for 1 h. The structure and microstructure of the annealed films were characterized by GAXRD, micro-Raman spectroscopy and AFM. The as-deposited TiO2 thin films are found to be amorphous. Micro-Raman and GAXRD results confirm the presence of the anatase phase and absence of the rutile phase for films annealed up to 700°C. The diffraction pattern of the film annealed at 800 to 1000°C contains peaks of both anatase and rutile reflections. The intensity of all peaks in micro-Raman and GAXRD patterns increased and their width (FWHM) decreased with increasing annealing temperature, demonstrating the improvement in the crystallinity of the annealed films. Phase transformation at higher annealing temperature involves a competition among three events such as: grain growth of anatase phase, conversion of anatase to rutile and grain growth of rutile phase. AFM image of the asdeposited films and annealed films indicated exponential grain growth at higher temperature.   相似文献   

2.
The Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.  相似文献   

3.
Titanium dioxide (TiO2) films with a thickness of 550 nm were deposited on quartz glass at 300 °C by metalorganic chemical vapor deposition. The effects of post-annealing between 600 °C and 1000 °C were investigated on the structural and optical properties of the films. X-ray diffraction patterns revealed that the anatase phase of as-grown TiO2 films began to be transformed into rutile at the annealing temperature of 900 °C. The TiO2 films were entirely changed to the rutile phase at 1000 °C. From scanning electron spectroscopy and atomic force microscopy images, it was confirmed that the microstructure of as-deposited films changed from narrow columnar grains into wide columnar ones. The surface composition of the TiO2 films, which was analyzed by X-ray photoelectron spectroscopy data, was nearly constant although the films were annealed at different temperatures. When the annealing temperature increased, the transmittance of the films decreased, whereas the refractive index and the extinction coefficient calculated by the envelope method increased at high temperature. The values of optical band gap decreased from 3.5 eV to 3.25 eV at 900 °C. This abrupt decrease was consistent with the anatase-to-rutile phase transition. Received: 4 October 2000 / Accepted: 4 December 2000 / Published online: 23 May 2001  相似文献   

4.
Influences of the TiO2 coating and thermal annealing on the photoluminescence (PL) properties of ZnS nanowires were investigated. ZnS nanowires were synthesized by thermal evaporation of ZnS powder and then coated with TiO2 by using the sputtering technique. The PL emission of ZnS nanowires can be significantly enhanced without nearly changing the wavelength of the emission by coating them with a TiO2 layer with an appropriate thickness and then annealing them in an Ar atmosphere. The optimum TiO2 coating layer thickness for the highest PL emission enhancement was found to be about 6.5 nm. The PL emission of the ZnS-core/TiO2-shell coaxial nanowires is degraded by annealing in an oxygen atmosphere whereas it is enhanced by annealing in an argon atmosphere.  相似文献   

5.
In the present work anatase–rutile transformation temperature and its effect on physical/chemical properties as well as photocatalytic activity of TiO2 particles were investigated. The characterisation of the synthesised and annealed TiO2 particles were determined by X-Ray Powder Diffraction (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS) and Brunauer–Emmett–Teller surface area analysis (BET). The refraction in the ultraviolet–visible (UV–vis) range was assessed using a dual-beam spectrophotometer. The photocatalytic performance of the particles was tested on methylene blue solution. The XRD data indicated that the percentage of rutile increased with the annealing temperature and almost 100% of anatase transformed to rutile at 1000 °C. In addition, the phase transformation was a linear function of annealing temperature so phase composition of TiO2 can be controlled by changing the annealing temperature. The SEM and BET results presented the increase of agglomerate size and the decrease of specific surface area with the increasing annealing temperature. This proved that anatase has smaller particle size and higher surface area than rutile. The photocatalytic activity of the annealed TiO2 powders reduced with the increase of annealing temperature. The samples annealed at 900 °C and 925 °C with anatase: rutile ratio of 92:8 and 77:23, respectively, showed the best activity. These results suggested that the photocatalytic activity of TiO2 particles is a function of phase composition. Thus it can be enhanced by changing its phase composition which can be controlled by annealing temperature.  相似文献   

6.
The structure and photoluminescence properties of TiO2-coated ZnS nanowires were investigated. ZnS nanowires were synthesized by thermal evaporation of ZnS powder and then coated with TiO2 by using the metal organic chemical vapor deposition (MOCVD) technique. We performed scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and photoluminescence (PL) spectroscopy to characterize the as-synthesized and TiO2-coated ZnS nanowires. TEM and XRD analyses revealed that the ZnS core and the TiO2 coatings had crystalline zinc blende and crystalline anatase structures, respectively. PL measurement at room temperature showed that the as-synthesized ZnS nanowires had two emissions: a blue emission centered in the range from 430 to 440 nm and a green emission at around 515 nm. The green emission was found to be dominant in the ZnS nanowires coated with TiO2 by MOCVD at 350°C for one or more hours, while the blue emission was dominant in the as-synthesized ZnS nanowires. Also the mechanisms of the emissions were discussed.  相似文献   

7.
CdS/CdSe co-sensitizers on TiO2 films were annealed using a two-step procedure; high temperature (300 °C) annealing of TiO2/CdS quantum dots (QDs), followed by low temperature (150 °C) annealing after the deposition of CdSe QDs on the TiO2/CdS. For comparison, two types of films were prepared; CdS/CdSe-assembled TiO2 films conventionally annealed at a single temperature (150 or 300 °C) and non-annealed films. The 300 °C-annealed TiO2/CdS/CdSe showed severe coalescence of CdSe QDs, leading to the blocked pores and hindered ion transport. The QD-sensitized solar cell (QD-SSC) with the 150 °C-annealed TiO2/CdS/CdSe exhibited better overall energy conversion efficiency than that with the non-annealed TiO2/CdS/CdSe because the CdSe QDs annealed at a suitable temperature (150 °C) provided better light absorption over long wavelengths without the hindered ion transport. The QD-SSC using the two-step annealed TiO2/CdS/CdSe increased the cell efficiency further, compared to the QD-SSC with the 150 °C-annealed TiO2/CdS/CdSe. This is because the 300 °C-annealed, highly crystalline CdS in the two-step annealed TiO2/CdS/CdSe improved electron transport through CdS, leading to a significantly hindered recombination rate.  相似文献   

8.
Titania (TiO2) exists in several phases possessing different physical properties. In view of this fact, we report on three types of hydrogen sensors based on individual TiO2 nanotubes (NTs) with three different structures consisting of amorphous, anatase or anatase/rutile mixed phases. Different phases of the NTs were produced by controlling the temperature of post‐anodization thermal treatment. Integration of individual TiO2 nanotubes on the chip was performed by employing metal deposition function in the focused ion beam (FIB/SEM) instrument. Gas response was studied for devices made from an as‐grown individual nanotube with an amorphous structure, as well as from thermally annealed individual nanotubes exhibiting anatase crystalline phase or anatase/rutile heterogeneous structure. Based on electrical measurements using two Pt complex contacts deposited on a single TiO2 nanotube, we show that an individual NT with an anatase/rutile crystal structure annealed at 650 °C has a higher gas response to hydrogen at room temperature than samples annealed at 450 °C and as‐grown. The obtained results demonstrate that the structural properties of the TiO2 NTs make them a viable new gas sensing nanomaterial at room temperature. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
ZnO薄膜的性质对水热生长ZnO纳米线阵列的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
用水热法在ZnO薄膜上制备了直径、密度及取向可控的ZnO纳米线阵列。ZnO薄膜是通过原子层沉积(ALD)方法制备并在不同温度下退火处理得到的,退火温度对ZnO薄膜的晶粒尺寸、结晶质量和缺陷性质有很大的影响。而ZnO薄膜的性质对随后生长的ZnO纳米线的直径、密度及取向能起到调节控制的作用。通过扫描电子显微镜(SEM)、X射线衍射(XRD)仪和光致发光(PL)测试对ZnO薄膜和ZnO纳米线进行了表征。最后得到的垂直取向的ZnO纳米线阵列适合在发光二极管和太阳能电池等领域使用。  相似文献   

10.
This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three‐dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma‐enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein–Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Hydrothermal method was used to prepare TiO2 nanoparticles with annealing temperature at 500 °C–700 °C. The mixture of anatase-rutile phase was investigated by powerful tool of X-ray diffraction (XRD). The structural parameters of anatase and rutile mixture phaseTiO2 nanoparticles were calculated from the Rietveld refinement. The transformation rate of rutile was increased linearly with an annealing temperature of 500 °C–700 °C. The spherical morphology of the anatase and rutile mixed phase were obtained by scanning electron microscope and transmission electron microscope. The spherical particle of the anatase and rutile TiO2 shows with great aggregation with different size and within the range of few tens nm. The EDAX study revealed the presence of titanium and oxygen. The best photocatalytic activity was identified as the 87.04% of anatase and 12.96% of rutile mixer phase of TiO2. Various factors could be involved for a better photocatalytic activity.  相似文献   

12.
Titania from nanoclusters to nanowires and nanoforks   总被引:1,自引:0,他引:1  
A novel method - inverse microemulsion has been developed not only for synthesizing low cost TiO2 nanoclusters but also for the first time preparing titania nanowires and nanoforks with rutile structure of single crystal. With two microemulsion systems, spherical TiO2 nanoclusters of 5 nm in average diameter are produced. These nanoclusters are amorphous and turned into anatase at an annealing temperature lower than 750 °C, and changed into rutile when annealed at higher temperature. When three microemulsions with TiCl4, ammonia and NaCl as aqueous phase, are used, the precursor powder containing Ti(OH)4/NaCl with molar ratio of 1000 are annealed at 750 °C and then TiO2 rutile nanowires with 22 nm in thickness and 4 m in length are formed. At the same time two kinds of nanoforks with defined boundary structures are constructed: one is a bent wire composed of two straight whiskers related by twinning on a (101) plane with the angle of 114° between the two legs, and the other by twinning on a (301) planes with the angle of 55° between the legs. Screw dislocations and a periodic structure are found in (301) twin boundary, while edge dislocations are observed in (101) twin boundaries.The experiments demonstrate that the titania rutile nanowires are formed through solid state phase transformation and sodium chloride play an important role in the process.  相似文献   

13.
The evolution of alumina coating layers on rutile TiO2 particle surfaces was investigated starting from aluminum sulfate by a chemical liquid deposition method. The morphology of the alumina coating layers was determined by transmission electron microscopy. The chemical structure and the evolution mechanism of the alumina coating layers on TiO2 surfaces were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and powder X-ray diffraction techniques. The dispersibility of the alumina-coated TiO2 powders was determined by dynamic laser scattering (DLS) mode. The alumina coating layers existed in boehmite phase, AlOOH, and anchored at the surfaces of TiO2 via Ti-O-Al bond. The formation of alumina coating layers on TiO2 surfaces depended on the pH value of the deposition solution and the alumina loading. After coated by alumina layer, the dispersibility, whiteness, brightness, and light scattering index of the resultant samples were promoted.  相似文献   

14.
Ordered ferromagnetic-nonmagnetic heterogeneous Fe60Pb40 nanowire arrays were successfully fabricated by alternating current (AC) electrodeposition into nanoporous alumina templates. Transmission electron microscopy (TEM) image and selected-area diffraction (SAED) pattern analysis showed that the Fe60Pb40 nanowires are polycrystalline with an average diameter of 22 nm and lengths up to several micrometers. X-ray diffraction (XRD) observations indicated that α-Fe and fcc Pb phase coexist and do not form metastable alloy phase. The as-deposited samples were annealed at 200, 300, 400 and 500 °C, respectively. Magnetic measurements showed that nanowires have high magnetic anisotropy with their easy axis parallel to the nanowire arrays, and the coercivity of the samples increased with the annealing temperature up to 400 °C and reached a maximum (2650 Oe). The change of magnetic properties associated with the microstructure was discussed.  相似文献   

15.
Nanostructured TiO2 thin films were deposited on quartz glass at room temperature by sol–gel dip coating method. The effects of annealing temperature between 200C to 1100C were investigated on the structural, morphological, and optical properties of these films. The X-ray diffraction results showed that nanostructured TiO2 thin film annealed at between 200C to 600C was amorphous transformed into the anatase phase at 700C, and further into rutile phase at 1000C. The crystallite size of TiO2 thin films was increased with increasing annealing temperature. From atomic force microscopy images it was confirmed that the microstructure of annealed thin films changed from column to nubbly. Besides, surface roughness of the thin films increases from 1.82 to 5.20 nm, and at the same time, average grain size as well grows up from about 39 to 313 nm with increase of the annealing temperature. The transmittance of the thin films annealed at 1000 and 1100C was reduced significantly in the wavelength range of about 300–700 nm due to the change of crystallite phase. Refractive index and optical high dielectric constant of the n-TiO2 thin films were increased with increasing annealing temperature, and the film thickness and the optical band gap of nanostructured TiO2 thin films were decreased.  相似文献   

16.
The results of studying the structure and phase composition of the surface layer of commercial pure VT1-0 titanium treated with compression plasma flows in nitrogen atmosphere and annealed in the temperature range of 400–900°C for 1 h are presented. Using the X-ray diffraction method, the α-Ti(O) solid solution is found to form in the titanium surface layer at 500°C, without pretreatment with plasma, and to transform into the titanium oxide TiO2 (rutile) phase at 600°C. Pretreatment of titanium with compression plasma flows promotes the formation of α-Ti(N) solid solution decreasing the rate of surface oxidation and increasing the initial temperature of rutile formation to 700°C, which indicates enhancement of the thermal stability of this structure.  相似文献   

17.
Raman spectra of TiO2 films prepared via the sol–gel process were studied by UV and visible Raman spectroscopy. The evolution of the phases of TiO2 films during annealing was investigated, and the relative intensities of the Raman bands excited with 325 nm were found to be distinct from those of the bands excited with 514 nm. The transmittance and FTIR spectra of the films annealed at different temperatures were characterized. The crystallization process of the powders and thin films treated by different annealing methods were also studied with Raman spectroscopy. The results show that the change in the relative intensities is caused by the resonance Raman effect. The anatase to rutile transition of the powder occurs at 700 °C, while that of the thin film occurs at 800 °C. The analysis of Raman band shape (peak position and full width at half‐maximum) after conventional furnace annealing and rapid thermal annealing indicates the influence of the non‐stoichiometry and phonon confinement effect. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Spinel LiMn2O4 suffers from severe dissolution when used as a cathode material in rechargeable Li-ion batteries. To enhance the cycling stability of LiMn2O4, we use the atomic layer deposition (ALD) method to deposit ultrathin and highly conformal Al2O3 coatings (as thin as 0.6–1.2 nm) onto LiMn2O4 cathodes with precise thickness control at atomic scale. Both bare and ALD-coated cathodes are cycled at a specific current of 300 mA g?1 (2.5 C) in a potential range of 3.4–4.5 V (vs. Li/Li+). All ALD-coated cathodes exhibit significantly improved cycleability compared to bare cathodes. Particularly, the cathode coated with six Al2O3 ALD layers (0.9 nm thick) shows the best cycling performance, delivering an initial capacity of 101.5 mA h?g?1 and a final capacity of 96.5 mA h?g?1 after 100 cycles, while bare cathode delivers an initial capacity of 100.6 mA h?g?1 and a final capacity of only 78.6 mA h?g?1. Such enhanced electrochemical performances of ALD-coated cathodes are ascribed to the high-quality ALD oxide coatings that are highly conformal, dense, and complete, and thus protect active material from severe dissolution into electrolytes. Besides, cycling performances of coated cathodes can be easily optimized by accurately tuning coating thickness via varying ALD growth cycles.  相似文献   

19.
Ceramic coatings containing TiO2 were formed on Ti6Al2Zr1Mo1V alloy surface by microarc oxidation (MAO) method. The microstructure, phase and chemical composition of the coatings were analyzed by SEM, XRD and EDS techniques. The coating mainly consists of rutile TiO2 and a small amount of anatase TiO2. The infrared emissivity values of coated and uncoated titanium samples when exposed to 700 °C were tested. It was found that the coating exhibits a higher infrared emissivity value (about 0.9) in the wavelength range of 8–14 μm than that of the uncoated titanium alloy, although which shows a slight increase from 0.1 to 0.3 with increasing exposure time at 700 °C. The relatively high infrared emissivity value of the MAO coating is possibly attributed to the photon emission from the as formed TiO2 phase.  相似文献   

20.
Using different electrolyte compositions and varying the off-time between pulses, Co1xZnx nanowire arrays were fabricated by ac pulse electrodeposition. The effect of deposition parameters on alloy contents was investigated by studying the microstructures and magnetic properties of as-deposited and annealed Co1xZnx nanowires. It is shown that Zn content in CoZn nanowires exponentially increases by increasing the zinc ions in the electrolyte. The Zn content initially increases to a maximum by increase in off-time between pulses and then falls off. Adding a certain amount of Zn to Co led to form amorphous CoZn nanowires. A significant increase in magnetization, coercivity and squareness of CoZn nanowires was observed after annealing. The rate of increase in magnetization of annealed samples was seen to be inversely proportional to their initial magnetization. Improvement of magnetic properties of annealed samples may be caused by magnetic cluster formation and pinning effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号