首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We have demonstrated two-photon induced recording of the microholograms at an arbitrary point within thick (∼100 μm) photopolymer material using photoinitiators on a basis of new cationic thioxanthone derivatives. Such material provides high values of refractive index change Δn = 4.8 × 10−3, and holographic recording sensitivity S = 1.2 cm/J. A nanosecond laser pulse at a wavelength of 532 nm was used for recording. For the selective on the depth reading of the microholograms the method of collinear heterodyning was applied.  相似文献   

2.
We present a simple method to measure the refractive index dispersion over a broad wavelength range (0.6-1.6 μm). In a first step, the optical group indices are obtained by measuring the time-retardation of tunable 150 fs laser pulses within a sample relative to air. The refractive index dispersion is then calculated using a Sellmeier equation that describes the measured group index dispersion. We show that our experimental data agree with previously published results to within 2 × 10−4 for a 3 mm thick sample of fused silica and to within 3 × 10−3 for the index n1 of a 2 mm thick crystal of the highly dispersive and anisotropic organic crystal 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate (DAST).  相似文献   

3.
A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm−1 and 1600 cm−1 respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 μm and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kgf/mm2 (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (Ra) in the range of 1.5-4 μm depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.  相似文献   

4.
We report on the femtosecond laser micromachining of photo-induced embedded diffraction grating in flexible Poly (Dimethly Siloxane) (PDMS) plates using a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp = 800 nm). The refractive index modifications with diameters ranging from 2 μm to 5 μm were photo-induced after the irradiation with peak intensities of more than 1 × 1011 W/cm2. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which femtosecond laser was focused. The maximum refractive index change (Δn) was estimated to be 2 × 10−3. By the X-Y-Z scanning of sample, the embedded diffraction grating in PDMS plate was fabricated successfully using a femtosecond laser.  相似文献   

5.
Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 °C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (Eto) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.  相似文献   

6.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

7.
We demonstrate high-efficiency diode-end-pumped multi-wavelength Nd:YAG lasers for continuous-wave and Q-switched operation. For the continuous-wave case, the Nd:YAG laser oscillates at 1.06 and 1.3 μm simultaneously; the maximum output power of 2.0 W (M2 = 1.3) and 3.6 W (M2 = 1.8) have been achieved at the incident pump power of 20.3 W, with the respective average slope efficiencies of 12.0% and 21.4%, for the lines of 1.06 and 1.3 μm, respectively. For the Q-switched operation, we achieve the average output power of 1.3 W (M2 = 2.7) at 1.06 μm and 2.0 W (M2 = 3.0) at 1.3 μm with the corresponding peak power of 10.2 and 4.2 kW under an incident pump power of 20.3 W.  相似文献   

8.
Silicon carbide (SiC), as it is well-known, is inaccessible to usual methods of technological processing. Consequently, it is important to search for alternative technologies of processing SiC, including laser processing, and to study the accompanying physical processes. The work deals with the investigation of pulsed laser radiation influence on the surface of 6H-SiC crystal. The calculated temperature profile of SiC under laser irradiation is shown. Structural changes in surface and near-surface layers of SiC were studied by atomic force microscopy images, photoluminescence, Raman spectra and field emission current-voltage characteristics of initial and irradiated surfaces. It is shown that the cone-shaped nanostructures with typical dimension of 100-200 nm height and 5-10 nm width at the edge are formed on SiC surface under nitrogen laser exposure (λ = 0.337 μm, tp = 7 ns, Ep = 1.5 mJ). The average values of threshold energy density 〈Wthn〉 at which formation of nanostructures starts on the 0 0 0 1 and surfaces of n-type 6H-SiC(N), nitrogen concentration nN ≅ 2 × 1018 cm−3, are determined to be 3.5 J/cm2 and 3.0 J/cm2, respectively. The field emission appeared only after laser irradiation of the surface at threshold voltage of 1000 V at currents from 0.7 μA to 0.7 mA. The main role of the thermogradient effect in the processes of mass transfer in prior to ablation stages of nanostructure formation under UV laser irradiation (LI) was determined. We ascertained that the residual tensile stresses appear on SiC surface as a result of laser microablation. The nanostructures obtained could be applied in the field of sensor and emitting extreme electronic devices.  相似文献   

9.
Using synchrotron-based stroboscopic photoemission electron microscopy with X-ray circular dichroism as contrast method, we have investigated the high-frequency response of permalloy thin-film structures. Standing precessional modes have been studied in rectangular elements (16 × 32 μm2, 10 nm thick) with a high time resolution of about 15 ps in the low-α mode of BESSY. With increasing amplitude of the applied magnetic AC field the particle is driven from an initial symmetric Landau flux-closure state into an asymmetric state and finally into a single-domain state magnetized perpendicular to the applied field HAC. The electromagnetic microwave field thus can induces a net magnetization in a small particle. This behaviour is a result of the constant throughput of energy (open system) that allows for an increase of local order, contrary to the usual increase on entropy in closed systems. A propagating spinwave in an ultrathin elliptical particle (semi axes 6 × 12 μm2, 3 nm thick) was observed in a snapshot series with 25 ps time increment. The phase front of the spinwave with large precessional angle (bright contrast) propagates with a velocity of 8100 m/s, i.e. much faster than typical domain wall velocities in permalloy.  相似文献   

10.
YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10−5 cm4 N−1 s−1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.  相似文献   

11.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

12.
Blue organic light-emitting devices based on wide bandgap host material, 2-(t-butyl)-9, 10-di-(2-naphthyl) anthracene (TBADN), blue fluorescent styrylamine dopant, p-bis(p-N,N-diphenyl-amino-styryl)benzene (DSA-Ph) have been realized by using molybdenum oxide (MoO3) as a buffer layer and 4,7-diphenyl-1,10-phenanthroline (BPhen) as the ETL. The typical device structure used was glass substrate/ITO/MoO3 (5 nm)/NPB (30 nm)/[TBADN: DSA-Ph (3 wt%)](35 nm)/BPhen (12 nm)/LiF (0.8 nm)/Al (100 nm). It was found that the MoO3∥BPhen-based device shows the lowest driving voltage and highest power efficiency among the referenced devices. At the current density of 20 mA/cm2, its driving voltage and power efficiency are 5.4 V and 4.7 Lm/W, respectively, which is independently reduced 46%, and improved 74% compared with those the m-MTDATA∥Alq3 is based on, respectively. The J-V curves of ‘hole-only’ devices reveal that a small hole injection barrier between MoO3∥NPB leads to a strong hole injection, resulting low driving voltage and high power efficiency. The results strongly indicate that carrier injection ability and balance shows a key significance in OLED performance.  相似文献   

13.
Thick crystalline zirconium oxide films were synthesized on Zircaloy-4 substrates by anodic oxidation at room temperature in NaOH solution with a stable applied voltage (300 V). The film is approximately 4.7 μm in thickness. The XPS and SEM analysis shows that the film is a three-layer structure in water, hydroxide and oxide parts. The thickness of that order is ∼0.01 μm, ∼1 μm, ∼3.7 μm, respectively. The oxide layer is composed of tetragonal and monoclinic phases with the volume ratio about 0.2. Furthermore, the thick anodic film acts as a barrier to oxygen and zirconium migrations. It effectively protects zirconium alloys against the worse corrosion. An extremely low passive current density of ∼0.018 μA/cm2 and a low oxidation weight gain of ∼0.411 mg/cm2 were also observed in the films.  相似文献   

14.
Nanocrystalline PZT thick films (1 mm square and over 10 μm thick) directly deposited onto stainless-steel substrates (PZT/SUS) by aerosol deposition (AD) technique and then annealed using focused laser beam with a fiber laser to suppress thermal damage to the back sides of the PZT/SUS and substrate near the film edge and to retain the dielectric and/or ferroelectric properties of the PZT/SUS. Compared with CO2 laser annealing, fiber laser annealing suppressed thermal damage to the substrate. Compared with PZT/SUS annealed at 600 °C using an electric furnace, PZT/SUS annealed at 600 °C using a fiber laser showed superior properties, namely, dielectric constant ? > 1200 at a frequency of 100 Hz, remanent polarization Pr > 30 μC/cm2, and coercive field strength Ec < 50 kV/cm at a frequency of 10 Hz. Furthermore, the grain growth for the PZT/SUS formed by AD technique and annealed by fiber laser irradiation was occurred within the laser spot size.  相似文献   

15.
Single-crystalline, pyramidal zinc oxide nanorods have been synthesized in a large quantity on p-Si substrate via catalyst-free thermal chemical vapor deposition at low temperature. SEM investigations showed that the nanorods were vertically aligned on the substrate, with diameters ranging from 60 to 80 nm and lengths about 1.5 μm. A self-catalysis VLS growth mechanism was proposed for the formation of the ZnO nanorods. The field emission properties of the ZnO nanopyramid arrays were investigated. A turn-on field about 3.8 V/μm was obtained at a current density of 10 μA/cm2, and the field emission data was analyzed by applying the Fowler-Nordheim theory. The stability of emission current density under a high voltage was also tested, indicating that the ZnO nanostructures are promising for an application such as field emission sources.  相似文献   

16.
Some results concerning the magnetic, electrical and microstructural properties of multilayer [FeCoBN/Si3N4n films in view of their utilization for manufacturing thin film magnetic inductors are presented. A comparison between the magnetic, electrical and structural properties of FeCoBN and [FeCoBN/Si3N4n thin films is also reported. The [FeCoBN/Si3N4n thin films with the thickness of the FeCoBN layers varied from 10 to 30 nm, exhibit good soft magnetic characteristics and high values for electrical resistivity such as Ms of 172–185 A m2/kg, Hc of 318–1433 A/m and ρ of 82–48×10−7 Ω m, respectively. These physical properties of the samples are discussed in relation with the microstructure of the multilayer system.  相似文献   

17.
In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of ∼1.5 μm, including an outer Ti-O film of ∼250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF2), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (Ecorr) of −1.60 V and a corrosion current density (Icorr) of 0.17 μA/cm2, which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 kΩ cm2 for the Ti-O coated sample and 0.42 kΩ cm2 for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.  相似文献   

18.
Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm−2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na2SiO3.5H2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ∼1 μm min−1 for treatment times up to 100 min and ∼0.2 μm min−1 for later times. The coatings are composed mainly of MgO and Mg2SiO4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.  相似文献   

19.
Subwavelength ripples (<λ/4) are obtained by scanning a tightly focused beam (∼1 μm) of femtosecond laser radiation (λ = 800 nm, tp = 100 fs) over the surface of either bulk fused silica and silicon and Er:BaTiO3. The ripple pattern extends coherently over many overlapping laser pulses parallel and perpendicular to the polarisation. Investigated are the dependence of the ripple spacing on the spacing of successive pulses, the direction of polarisation and the material. The evolution of the ripples is investigated by applying pulse bursts with N = 1 to 20 pulses. The conditions under which these phenomena occur are specified, and some possible mechanisms of ripple growth are discussed. Potential applications are presented.  相似文献   

20.
Zinc oxide (ZnO) thin films were deposited on the gallium nitride (GaN) and sapphire (Al2O3) substrates by pulsed laser deposition (PLD) without using any metal catalyst. The experiment was carried out at three different laser wavelengths of Nd:YAG laser (λ = 1064 nm, λ = 532 nm) and KrF excimer laser (λ = 248 nm). The ZnO films grown at λ = 532 nm revealed the presence of ZnO nanorods and microrods. The diameter of the rods varies from 250 nm to 2 μm and the length varies between 9 and 22 μm. The scanning electron microscopy (SEM) images of the rods revealed the absence of frozen balls at the tip of the ZnO rods. The growth of ZnO rods has been explained by vapor-solid (V-S) mechanism. The origin of growth of ZnO rods has been attributed to the ejection of micrometric and sub-micrometric sized particulates from the ZnO target. The ZnO films grown at λ = 1064 nm and λ = 248 nm do not show the rod like morphology. X-ray photoelectron spectroscopy (XPS) has not shown the presence of any impurity except zinc and oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号