首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
M.S. Chen 《Surface science》2007,601(23):5326-5331
Studies show that the rate of CO oxidation on Pt-group metals at temperatures between 450 and 600 K and pressures between 1 and 300 Torr increases markedly with an increase in the O2/CO ratio above 0.5. The catalytic surfaces, formed at discrete O2/CO ratios >0.5, exhibit rates 2-3 orders of magnitude greater than those rates observed for stoichiometric reaction conditions and similar reactant pressures or previously in ultrahigh vacuum studies at any reactant conditions and extrapolate to the collision limit of CO in the absence of mass transfer limitations. The O2/CO ratios required to achieve these so-called “hyperactive” states (where the reaction probabilities of CO are thought to approach unity) for Rh, Pd, and Pt relate directly to the adsorption energies of oxygen, the heats of formation of the bulk oxides, and the metal particle sizes. Auger spectroscopy and X-ray photoemission spectroscopy reveal that the hyperactive surfaces consist of approximate 1 ML of surface oxygen. In situ polarization modulation reflectance absorption infrared spectroscopy measurements coupled with no detectable adsorbed CO. In contrast, under stoichiometric O2/CO conditions and similar temperatures and pressures, Rh, Pd, and Pt are essentially saturated with chemisorbed CO and exhibit far less activity for CO oxidation.  相似文献   

2.
Y.-N. Sun  H.-J. Freund 《Surface science》2009,603(20):3099-10094
We studied CO adsorption on Pt particles deposited on well-ordered Fe3O4(1 1 1) thin films grown on Pt(1 1 1) by temperature programmed desorption (TPD). A highly stepped Pt(1 1 1) surface produced by ion sputtering and annealing at 600 K was studied for comparison. Structural characterization was performed by scanning tunneling microscopy and Auger electron spectroscopy. The TPD spectra revealed that in addition to the desorption peaks at ∼400 and 480 K, assigned to CO adsorbed on Pt(1 1 1) facets and low-coordination sites respectively, the Pt nanoparticles annealed at 600 K exhibit a desorption state at ∼270 K. This state is assigned to initial stages of strong metal support interaction resulting in partial Fe-Pt intermixing. On both Pt/Fe3O4(1 1 1) and stepped Pt(1 1 1) surfaces CO is found to dissociate at 500 K. The results suggest that CO dissociation and carbon accumulation occur on the low-coordinated Pt sites.  相似文献   

3.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

4.
S.D. Sartale 《Surface science》2006,600(22):4978-4985
The growth of Pt nanoclusters on thin film Al2O3 grown on NiAl(1 0 0) was studied by using scanning tunneling microscopy (STM). The samples were prepared by vapor depositing various amounts of Pt onto the Al2O3/NiAl(1 0 0) at different substrate temperatures in ultra high vacuum (UHV). The STM images show that sizeable Pt nanoclusters grow solely on crystalline Al2O3 surface. These Pt clusters appear to be randomly distributed and only a few form evident alignment patterns, contrasting with Co clusters that are highly aligned on the crystalline Al2O3. The size distributions of these Pt clusters are rather broader than those of the Co clusters on the same surface and the sizes are evidently smaller. With increasing coverage or deposition temperature, the number of larger clusters is enhanced, while the size of the majority number of the clusters remains around the same (0.4 nm as height and 2.25 nm as diameter), which differs drastically from the Pt clusters on γ-Al2O3/NiAl(1 1 0) observed earlier. These Pt cluster growth features are mostly attributed to smaller diffusion length and ease to form stable nucleus, arising from strong Pt-Pt and Pt-oxide interactions and the peculiar protrusion structures on the ordered Al2O3/NiAl(1 0 0). The thermal stability of Pt nanoclusters was also examined. The cluster density decreased monotonically with annealing temperature up to 1000 K at the expense of smaller clusters but coalescence is not observed.  相似文献   

5.
We have studied adsorption of CO on Fe3O4(1 1 1) films grown on a Pt(1 1 1) substrate by temperature programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS) and high resolution electron energy loss spectroscopy (HREELS). Three adsorption states are observed, from which CO desorbs at ∼110, 180, and 230 K. CO adsorbed in these states exhibits stretching frequencies at ∼2115-2140, 2080 and 2207 cm−1, respectively. The adsorption results are discussed in terms of different structural models previously reported. We suggest that the Fe3O4(1 1 1) surface is terminated by 1/2 ML of iron, with an outermost 1/4 ML consisting of octahedral Fe2+ cations situated above an 1/4 ML of tetrahedral Fe3+ ions, in agreement with previous theoretical calculations. The most strongly bound CO is assigned to adsorption to Fe3+ cations present on the step edges.  相似文献   

6.
Adsorption isotherms have been measured at 77.5 K for nitric oxide and nitrogen on Al2O3, MgO, ZnO and NiO, and at 90.2 K. for nitric oxide on A12O3 and NiO. Three isotherm measurements at 77.5 K were made on the Al2O3 sample for each adsorbate to examine the effect of different degrees of surface dehydroxylation. The latter was assessed by means of infrared absorption studies on an Al2O3 disc. Isosteric heats for NO adsorption on Al2O3 and NiO increase from ca. 8 kJ mol?1 and 6 kJ mol?1 (respectively) at half monolayer coverage to near the value of the enthalpy of sublimation (16.6 kJ mol?1) at monolayer completion. These results are discussed in terms of adsorbate dimerisation. Anomalous adsorption-desorption behaviour for the NONiO system is discussed. Effective adsorbate molecular cross-sectional areas and results for N2 adsorption on preadsorbed NO do not support the existence of either localisation or micro-porosity.  相似文献   

7.
C.S. Ko  R.J. Gorte 《Surface science》1985,155(1):296-312
The interactions between oxide support materials and Pt have been studied by incorporating silica, alumina, titania, and niobia into the surface of a clean Pt foil. Auger electron spectroscopy (AES) and temperature-programmed desorption (TPD) of CO and H2 were used for surface characterization. For all of these oxides, TPD indicated no change in the adsorption properties of CO and H2. Peak temperatures were unaffected by the presence of oxide impurities. For silica and alumina, AES results indicated that suboxides could be formed after oxidation at 400 and 800 K respectively. Al2O3 and SiO2 were formed at higher temperatures. Relatively large quantities of these oxides were required to substantially decrease the saturation coverages of CO and H2, indicating that these oxides probably form clusters on the metal surface. For titania and niobia, AES indicated that these oxides dissolved into the Pt above 1300 K, but segregated back to the surface below 500 K. These segregated layers cover the Pt evenly and both oxides completely suppress H2 and CO adsorption at an oxygen coverage of 1 × 1015/cm2. These results are used to discuss the possible reasons for differences in the catalytic properties of Pt on these four oxide supports.  相似文献   

8.
Mine A. Gülmen 《Surface science》2006,600(21):4909-4921
The adsorption properties of CO on Pt3Sn were investigated by utilizing quantum mechanical calculations. The (1 1 1), (1 1 0) and (0 0 1) surfaces of Pt3Sn were generated with all possible bulk terminations, and on these terminations all types of active sites were determined. The adsorption energies and the geometries of the CO molecule at those sites were found. Those results were compared with the results obtained from the adsorption of CO on similar sites of Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) surfaces. The comparison reveals that adsorption of CO is stronger on Pt surfaces; this may be the reason why catalysts with Pt3Sn phase do not suffer from CO posioning in experimental works. Aiming to understand the interactions between CO and the metal adsorption sites in detail, the local density of states (LDOS) profiles were produced for atop-Pt adsorption, both for the carbon end of CO for its adsorbed and free states, and for the Pt atom of the binding site. LDOS profiles of C of free and adsorbed CO and Pt for corresponding pure Pt surfaces, Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) were also obtained. The comparison of the LDOS profiles of Pt atoms of atop adsorption sites on the same faces of bare Pt3Sn and Pt surfaces showed the effect of alloying with Sn on the electronic properties of Pt atoms. Comparison of LDOS profiles of the C end of CO in its free and atop adsorbed states on Pt3Sn and LDOS of Pt on bare and CO adsorbed Pt3Sn surface were used to clear out the electronic changes occurred on CO and Pt upon adsorption. The study showed that (i) inclusion of a Sn atom at the adsorption site structure causes dramatic decrease in stability which limits the number of possible CO adsorption sites on Pt3Sn surface, (ii) the presence of Sn causes angles different from 180° for M-C-O orientation, (iii) the presence of Sn in the neighborhood of Pt on which CO is adsorbed causes superposition of the 5σ/1π derived-state peaks at the carbon end of CO and changes in adsorption energy of CO, (iv) Sn present beneath the adsorption site strengthens the CO adsorption, whereas neighboring Sn on the surface weakens it for all Pt3Sn surfaces tested and (v) the most stable site for CO adsorption is the atop-Pt site of the mixed atom termination of Pt3Sn(1 1 0).  相似文献   

9.
The heats of adsorption of different C1 and C2 molecules assumed to be present during the initial steps of the Fischer-Tropsch synthesis and activation energies for elementary steps envisioned to occur in the synthesis are calculated for Co by using the unity bond index-quadratic exponential potential (UBI-QEP) method. The preexponential factors for the elementary steps are calculated from transition-state theory, and the rate constants are calculated according to the Arrhenius equation. The activation barrier for hydrogenation of CO is found to be lower compared to hydrogen assisted dissociation of CO, which has a smaller activation barrier than direct dissociation of CO. The reaction steps with high activation barriers are eliminated. Based on this elimination two sets of elementary steps for formation of C1 and C2 alkenes and alkanes in the Fischer-Tropsch synthesis are established: one based on hydrogen assisted CO dissociation (carbide mechanism) and one based on CO hydrogenation (CO insertion mechanism). In addition, one mechanism of producing CO2 from the water-gas shift reaction is proposed. The resulting mechanisms are combined and used in the microkinetic model, which are fitted to experimental results at methanation conditions (T = 483 K or 493 K, p = 1.85 bar and H2/CO = 10) over a Co/Al2O3 Fischer-Tropsch catalyst. A good tuning is obtained by adjusting the C-Co and H-Co binding strengths. The microkinetic modelling based on these assumptions indicates that CO is mainly converted through hydrogenation of CO and that C2 compounds are mainly produced by insertion of CO into a metal-methyl bond. Thus, from the surface coverages and reaction rates predicted by the microkinetic modelling the mechanism can be further reduced to only include the CO insertion mechanism. Hydrogenation of CHO to CH2O is found to be the rate determining initiation step, and insertion of CO into a metal-methyl bond is found to be the rate determining step for chain growth. By using the UBI-QEP method for calculation of activation energies, the activation barriers for dissociation of CO and hydrogenation of surface carbon are found to be too large for the carbide mechanisms to occur. However, experimental data or another theoretical method is necessary in order to support or disprove the calculated activation energies in this work.  相似文献   

10.
The fully-oxidized surface that forms on (1 1 1) oriented Ni3Al single crystals, with and without Pt addition, at 300-900 K under oxygen pressures of ca. 10−7 Torr was studied using XPS, AES, and LEIS. Two main types of surfaces form, depending upon oxidation temperature. At low-temperature, the predominant oxide is NiO, capped by a thin layer of aluminum oxide, which we refer to generically as AlxOy. At high-temperature (i.e., 700-800 K), NiO is replaced by a thick layer of AlxOy. By comparing samples that contain 0, 10 and 20 at.% Pt in the bulk, we find that the effect of Pt is to: (1) reduce the maximum amount of both NiO and AlxOy; and (2) shift the establishment of the thick AlxOy layer to lower temperatures. Platinum also decreases the adsorption probability of oxygen on the clean surface.  相似文献   

11.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   

12.
Strontium ferrite (SrM) thin films deposited on thermally oxidized silicon wafer (SiO2/Si) and single crystal sapphire with (0 0 l) orientation (Al2O3(0 0 l)) substrate using Pt underlayer were prepared by DC magnetron sputtering system. It was found that the intensity of (1 1 1) line for Pt and that of (0 0 l) diffraction line for SrM increases with increasing substrate temperature, Tu. The c-axis dispersion angle, Δθ50, of SrM(0 0 8) depends on that of Pt underlayer. Both dispersion angle of Pt(1 1 1) and SrM(0 0 8) decrease with increasing temperature. It was observed that the saturation magnetization of SrM/Pt deposited on SiO2/Si is higher than that of Al2O3 substrate. The coercivity and remanent squareness ratio in perpendicular direction are higher than that in in-plane direction. The maximum of coercivity in perpendicular direction of SrM/Pt films deposited on single crystal Al2O3 is about 4.2 kOe.  相似文献   

13.
Temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the adsorption and photon-induced decomposition of Mo(CO)6. Mo(CO)6 adsorbs molecularly on a Pt(1 1 1) surface with weak interaction at 100 K and desorbs intact at 210 K without undergoing thermal decomposition. Adsorbed Mo(CO)6 undergoes decarbonylation to form surface Mo(CO)x (x ? 5) under irradiation of ultraviolet light. The Mo(CO)x species can release further CO ligands to form Mo adatoms with CO desorption at 285 K. In addition, a fraction of the released CO ligands transfers onto the Pt surface and subsequently desorbs at 350-550 K. The resulting Mo layer deposited on the Pt surface is nearly free of contamination by C and O. The deposited Mo adatoms can diffuse into the bulk Pt at temperatures above 1070 K.  相似文献   

14.
The adsorption/desorption characteristics of CO, O2, and H2 on the Pt(100)-(5 × 20) surface were examined using flash desorption spectroscopy. Subsequent to adsorption at 300 K, CO desorbed from the (5×20) surface in three peaks with binding energies of 28, 31.6 and 33 kcal gmol?1. These states formed differently from those following adsorption on the Pt(100)-(1 × 1) surface, suggesting structural effects on adsorption. Oxygen could be readily adsorbed on the (5×20) surface at temperatures above 500 K and high O2 fluxes up to coverages of 23 of a monolayer with a net sticking probability to ssaturation of ? 10?3. Oxygen adsorption reconstructed the (5 × 20) surface, and several ordered LEED patterns were observed. Upon heating, oxygen desorbed from the surface in two peaks at 676 and 709 K; the lower temperature peak exhibited atrractive lateral interactions evidenced by autocatalytic desorption kinetics. Hydrogen was also found to reconstruct the (5 × 20) surface to the (1 × 1) structure, provided adsorption was performed at 200 K. For all three species, CO, O2, and H2, the surface returned to the (5 × 20) structure only after the adsorbates were completely desorbed from the surface.  相似文献   

15.
Christian Punckt 《Surface science》2006,600(16):3101-3109
An ultra-thin self-supporting Pt-foil with a thickness of 300 nm and 4 mm diameter has a heat capacity of only 10 μJ/K. Thus, even small amounts of heat deposited within the thin metal foil cause a significant temperature increase. During the adsorption of, for example, CO heat in the order of 30 μJ/ML is released into the metal. If the rim of a Pt(1 1 0) single crystal foil is rigidly mounted on a substrate, a temperature increase of the foil induced by adsorption and reaction of CO and O2 causes thermo-elastic stress. This will lead to macroscopic deformations of the metal foil. To quantify these deformations an imaging Michelson-interferometer was set up, capable to detect small deflections of the ultra-thin Pt catalyst down to 10-20 nm. Adsorption of CO and O2 causes a clear mechanical response of the Pt foil. Depending on sample temperature and partial pressures of the reactants fronts and pulses of deformation were found. The system can be calibrated by using continuous and chopped laser light. The optical properties of the catalytic surface change in the presence of adsorbates. This complicates the analysis, but can be avoided in an improved setup.  相似文献   

16.
Jakub Drnec 《Surface science》2009,603(13):2005-2014
The adsorption of Cs on Pt(1 1 1) surfaces and its reactivity toward oxygen and iodine for coverages θCs?0.15 is reported. These surfaces show unusual “anomalous” behavior compared to higher coverage surfaces. Similar behavior of K on Pt(1 1 1) was previously suggested to involve incorporation of K into the Pt lattice. Despite the larger size of Cs, similar behavior is reported here. Anomalous adsorption is found for coverages lower than 0.15 ML, at which point there is a change in the slope of the work function. Thermal Desorption Spectroscopy (TDS) shows a high-temperature Cs peak at 1135 K, which involves desorption of Cs+ from the surface.The anomalous Cs surfaces and their coadsorption with oxygen and iodine are characterized by Auger Electron Spectroscopy (AES), TDS and Low Electron Energy Diffraction (LEED). Iodine adsorption to saturation on Pt(1 1 1)(anom)-Cs give rise to a sharp LEED pattern and a distinctive work function increase. Adsorbed iodine interacts strongly with the Cs and weakens the Cs-Pt bond, leading to desorption of CsxIy clusters at 560 K. Anomalous Cs increases the oxygen coverage over the coverage of 0.25 ML found on clean Pt. However, the Cs-Pt bond is not significantly affected by coadsorbed oxygen, and when oxygen is desorbed the anomalous cesium remains on the surface.  相似文献   

17.
Yuhai Hu 《Surface science》2007,601(12):2467-2472
The interaction between NO and CH3OH on the surface of stepped Pt(3 3 2) was investigated using Fourier transform infra red reflection-absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). At 90 K, pre-dosed CH3OH molecules preferentially adsorb on step sites, suppressing the adsorption of NO molecules on the same sites. However, due to a much stronger interaction with Pt, at 150 K and higher, the adsorption of NO molecules on step sites is restored, giving rise to peaks closely resembling those of NO molecules adsorbed on clean Pt(3 3 2) surface. Adsorbed CH3OH is very reactive on this surface, and is readily oxidized to formate in the presence of O2, even at 150 K. In contrast, reactions between CH3OH and co-adsorbed NO are slight to non-existent. There are no new peaks in association with intermediates resulting from CH3OH-NO interactions. It is concluded that the reduction of NO with CH3OH on Pt(3 3 2) does not proceed through a mechanism of forming intermediates.  相似文献   

18.
CO and O2 co-adsorption and the catalytic oxidation of CO on a Pt(1 1 0) surface under various pressures of CO and O2 (up to 250 mTorr) are studied using ambient pressure X-ray photoelectron spectroscopy (APXPS) and mass spectrometry. There is no surface oxide formation on Pt under our reaction conditions. CO oxidation in this pressure (<500 mTorr), O2 to CO ratio (<10), and temperature (150 °C) regime is consistent with the Langmuir-Hinshelwood reaction mechanism. Our findings provide in-situ surface chemical composition data of the catalytic oxidation of CO on Pt(1 1 0) at total pressures below 1 Torr.  相似文献   

19.
Electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy were used to study the formation of ruthenium and adsorbed species appearing on the catalyst during O2, NO, and CO adsorption at room temperature on 1 wt% Ru/MgF2 catalysts prepared from Ru3(CO)12 . Both EPR and IR results provided clear evidence for the interaction between surface ruthenium and probe molecules. No EPR signals due to ruthenium (Ru) species were recorded at 300 and 77 K after H2-reduction of the catalyst at 673 K. However, at 4.2 K a very weak EPR spectrum due to low-spin (4d5) Ru3+ complexes was detected. A weak anisotropic O2- radicals signal with g∣∣=2.017 and g=2.003 superimposed on a broad (ΔBpp=120 mT), slightly asymmetric line at g=2.45(1) was identified after O2 admission to the reduced sample. Adsorption of NO gives only a broad, Gaussian-shaped EPR line at g=2.43(1) indicating that the admission of NO, similarly to O2 adsorption, brings about an oxidation of Ru species in the course of the NO decomposition reaction. Introduction of NO over the CO preadsorbed catalyst leads to EPR spectrum with parameters g=1.996, g∣∣=1.895, and AN=2.9 mT assigned to surface NO species associated with Ru ions. The IR spectra recorded after adsorption of NO or CO probe molecules showed the bands in the range of frequency characteristic of ruthenium nitrosyl, nitro, and nitrate/nitrite species and the bands characteristic of ruthenium mono-and multicarbonyls, respectively. Addition of CO after NO admission to the catalyst leads to appearance in the IR spectrum, beside the ones characteristic of NO adsorption, the bands which can be attributed to Ru-CO2 and Ru-NCO species, indicating that the reaction between NO and CO occurs. These species were also detected after CO adsorption followed by NO adsorption, additionally to the band at 1850 cm−1 being due to cis-type species.  相似文献   

20.
Infrared reflection absorption spectroscopy together with mass spectrometry has been used to investigate the interaction of NO and CO on Pt{1 0 0}, initially prepared in the reconstructed ‘hex’ phase, under ambient pressures of these gases, in the temperature range 300-500 K. The results allow the local and total coverages of adsorbed CO and NO to be related to the rate of reaction to produce gas phase CO2, and provide insight into the species present on the surface during the so-called low temperature oscillatory reaction regime of this process. At temperatures below that at which NO dissociation occurs (approximately 390-400 K) adsorption is controlled by the non-reactive displacement of NO by CO and results in a CO-poisoned surface. Above 400 K when significant CO2 production occurs, the NO coverage increases to produce a surface with NO and CO fully intermixed; the increase in NO coverage is attributed to the higher rate of NO arrival from the gas phase (with a partial pressure ratio of PNO:PCO>1) at free surface sites created by NO dissociation and subsequent reaction with CO. The competition between these two processes of non-reactive NO displacement by CO and reactive displacement of CO by NO is proposed to determine the parameter space of the low temperature oscillatory regime. Rapid equilibration between bridged and atop CO species leads to them appearing to exhibit identical reaction behaviour. Particularly at the lowest reaction temperatures (around 400 K), islands of pure CO may coexist on the surface but not participate in the reaction. Under conditions corresponding to the high temperature oscillatory regime, small quantities of absorbed CO, but no NO, are seen on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号