首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To improve hydrophilicity and blood compatibility properties of polyurethane (PU) film, we chemically induced graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto the surface of polyurethane film using benzoyl peroxide as an initiator. The effects of grafting temperature, grafting time, monomer and initiator concentrations on the grafting yields were studied. The maximum grafting yield value was obtained 0.0275 g/cm2 for HEMA. Characterization of the films was carried out by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle measurements. ATR-FTIR data showed that HEMA was successfully grafted onto the PU films surface. Water contact angle measurement demonstrated the grafted films possessed a relatively hydrophilic surface. The blood compatibility of the grafted films was preliminarily evaluated by a platelet-rich plasma adhesion test and hemolysis test. The results of platelet adhesion experiment showed that polyurethane grafted polymerization with monomer of 2-hydroxyethyl methacrylate had good blood compatibility featured by the low platelet adhesion. Hemolysis rate of the PU-g-PHEMA films was dramatically decreased than the ungrafted PU films. This kind of new biomaterials grafted with HEMA monomers might have a potential usage for biomedical applications.  相似文献   

2.
This work described the graft polymerization of a sulfonic acid terminated monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), onto the surface of polypropylene non-woven (NWF PP) membrane by O2 plasma pretreatment and UV-induced photografting method. The chemical structure and composition of the modified surfaces were analyzed by FTIR-ATR and XPS, respectively. The wettability was investigated by water contact angle and equilibrium water adsorption. And the biocompatibility of the modified NWF PP membranes was evaluated by protein adsorption and platelet adhesion. It was found that the graft density increased with prolonging UV irradiation time and increasing AMPS concentration; the water contact angles of the membranes decreased from 124° to 26° with the increasing grafting density of poly(AMPS) from 0 to 884.2 μg cm−2, while the equilibrium water adsorption raised from 5 wt% to 75 wt%; the protein absorption was effectively suppressed with the introduction of poly(AMPS) even at the low grafting density (132.4 μg cm−2); the number of platelets adhering to the modified membrane was dramatically reduced when compared with that on its virgin surface. These results indicated that surface modification of NWF PP membrane with AMPS was a facile approach to construct biocompatible surface.  相似文献   

3.
Polypropylene (PP) nonwoven fabric (NWF) was modified by direct current pulsed plasma followed by grafting with acrylic acid (AAc) to improve its surface hydrophilicity and to introduce carboxylic acid group on the surface for further conjugation with bioactive collagen biomolecule. To endow temperature-responsive property, PP-g-collagen NWF was further modified with poly(N-isopropylacrylamide) (PNIPAAm). Experimental results demonstrated that the amount of AAc and collagen grafted were 43.4 nmole/cm2, and 35.9 μg/cm2, respectively. The amount of PNIPAAm immobilized was 213 μg/cm2. The physical properties, surface chemical composition, and microstructure of the NWFs were characterized. From animal study, modified NWFs were found to promote wound healing with bigraft PP-g-collagen-g-PNIPAAm NWF showing the best performance.  相似文献   

4.
Graft polymerization of acrylic acid (AA) onto poly(l-lactide) (PLLA) film by UV irradiation was carried out to develop surfaces for N-methylene phosphonic chitosan (NMPC) immobilization. The properties of modified films were discussed by colorimetric method, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), contact angles, atomic force microscopy (AFM) and osteoblast incubation. The results showed that AA solution concentration and irradiation time had effect on the graft carboxyl densities. Comparing the ATR-FTIR images, two new peaks at 1561 cm−1 and 1632 cm−1 proved that NMPC was immobilized on the film surface successfully. The water contact-angles were decreased from 90 ± 5° to 37 ± 5° after modification. The AFM images indicated that the surface of the combined film was rougher than that of untreated film. The grafted film provided an excellent substrate for the growth of osteoblast.  相似文献   

5.
V. Lavalley 《Surface science》2007,601(23):5424-5432
First and original results are reported regarding the surface evolution of two kinds of oxide film after covalent grafting and hybridization of hairpin oligonucleotide probes. These hairpin probes were monolabelled with a 1.4 nm gold nanoparticle. One kind of oxide film was rough Sb doped SnO2 oxide film and the other kind was smooth SiO2 film. Same process of covalent grafting, involving a silanization step, was performed on both oxide surfaces. Atomic force microscopy (AFM) was used to study the evolution of each oxide surface after different steps of the process: functionalization, probe grafting and hybridization. In the case of rough SnO2 films, a slight decrease of the roughness was observed after each step whereas in the case of smooth SiO2 films, a maximum of roughness was obtained after probe grafting. Step height measurements of grafted probes could be performed on SiO2 leading to an apparent thickness of around 3.7 ± 1.0 nm. After hybridization, on the granular surface of SnO2, by coupling AFM with SEM FEG analyses, dispersed and well-resolved groups of gold nanoparticles linked to DNA duplexes could be observed. Their density varied from 6.6 ± 0.3 × 1010 to 2.3 ± 0.3 × 1011 dots cm−2. On the contrary, on smooth SiO2 surface, the DNA duplexes behave like a dense carpet of globular structures with a density of 2.9 ± 0.5 × 1011 globular structures cm−2.  相似文献   

6.
Measurements of advancing contact angles (θ) were carried out for aqueous solutions of Triton X-100 (TX-100) and methanol and ethanol mixtures at constant TX-100 concentration equal to 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 6 × 10−4 and 1 × 10−3 M, respectively, on polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA). Using measured contact angle values the relationships between cos θ, adhesion tension and surface tension of the solutions were determined, and on their basis the critical surface tension of PTFE and PMMA wetting was calculated. The obtained average value of the critical surface tension of PTFE wetting is lying in the range of the PTFE surface tension values which can be found in the literature, while for PMMA it is even lower than the Lifshitz-van der Waals component of its surface tension. From the relationship between the adhesion and surface tension and Lucassen-Reynders equation it results that in the case of PTFE the adsorption at the PTFE-solution and solution-air interfaces is the same, which was confirmed by a linear relationship between the cos θ and 1/γLV and intercept on cos θ axis equal to −1. However, for PMMA the adsorption of the surface active agents at solution-air interface is higher than at PMMA-solution. Using the values of the contact angle the values of the adhesion work of solution to the PTFE and PMMA surface were also determined, which are constant for PTFE, but for PMMA decrease with alcohol concentration increase. Next, using the contact angle values in the Young equation, the PTFE(PMMA)-solution interface tension was also calculated. The obtained values of PTFE-solution interface tension were compared with those evaluated from the Szyszkowski, Connors and Fainerman and Miller equations, and good agreement between these values was observed for all series of TX-100 and alcohol mixtures at a low alcohol concentration.  相似文献   

7.
The surfaces of polyethylene terephthalate (PET) were modified by oxygen plasma-induced and ultraviolet (UV)-assisted acrylic acid (AAc) grafting polymerization, and the carboxyl (COOH) groups on the PET surface was 5.29 × 10−9mol/cm2. Then using the COOH as reacting sites, the molecules of gelatin and bovine serum albumin (BSA) were further co-immobilized on the PET surface. The modified PET surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and surface chemical quantitative analysis. The results showed that the molecules of gelatin and albumin were immobilized on the PET surface. The concentration of gelatin on the gelatin-immobilized PET surface was 2.02 μg/cm2. For the gelatin-immobilized PET surface, the human umbilical vein endothelial cells (HUVECs) culture attachment and proliferation ratios were improved, but the anticoagulation became worse proved by platelet adhesion test in vitro and the lactate dehydrogense (LDH) test. After further co-immobilization of albumin with gelatin biomolecules on the PET surface (PET-Gel-BSA), the percent of platelet adhesion in vitro decreased 28% than that on the gelatin-immobilized PET surface, and the cell density on the PET-Gel-BSA film (1.08 × 105 cells/cm2) was significantly higher than that on the control PET surface. This investigation tries to find a method which can construct the anticoagulant surface before the endothelium formation and also accelerate the endothelialization of polymer surface.  相似文献   

8.
Thin films of polytetrafluoroethylene (PTFE) were deposited by pulsed electron deposition (PED) technique. The transmission electron microscopy (TEM) image of the RT fabricated (20 Å thick) film on carbon coated copper grid shows crystalline nature. Infrared spectra show one to one correspondence between PED ablated film and the PTFE bulk target. The asymmetrical and symmetrical -CF2- stretching modes were observed at 1220 and 1156 cm−1, respectively. The -CF2- wagging and bending modes occur at 644 and 512 cm−1, respectively. X-ray diffraction patterns of the film deposited at room temperature (RT) show oriented film along (1 0 0) plane of hexagonal structure and the crystalline nature is retained up to 300 °C on vacuum annealing. The room temperature fabricated film shows smooth and pin hole free surface whereas post-annealing brings discontinuity, roughness and pin holes.  相似文献   

9.
The surface of poly(tetrafluoroethylene) (PTFE or Teflon) was treated by nitrogen plasma-based ion implantation. Accelerating voltages between 15 and 30 kV, fluences between 1 × 1017 and 3 × 1017 cm−2 and fluence rates between 3 × 1013 and 7 × 1013 cm−2 s−1 were applied. The effects of these main parameters were examined on the evolution of surface chemical composition, mean roughness, abrasive wear, wettability and surface electrical resistance. The aim was to obtain relationships, enabling to control the surface properties examined.The F/C atomic ratio determined by XPS strongly decreased, correlating inversely with voltage. The mean surface roughness characterized by topography measurements, increased, correlating directly with fluence and inversely with voltage. The wear volume obtained by multipass scratch tests did not show clear relationship with the main process parameters, however, it increased upon treatment with the increase of surface roughness and O/C atomic ratio. The water contact angle increased at low voltages and high fluences, due to preferential increase of roughness, and decreased at high voltages and low fluences, owing to intense defluorination and incorporation of N and O. The electrical resistance of the PBII-treated surfaces decreased by several orders of magnitude, showing a significant inverse correlation with fluence. It continued to decrease for samples exposed to air, primarily after treatments performed with low fluences, due to post-treatment type oxidation.  相似文献   

10.
Temperature-induced desorption behavior of water from methylcellulose (MC) film was investigated by a novel microscopic Fourier transform infrared (FT-IR) spectroscopy equipped with thermal analyzer (thermal FT-IR microscopic system) and thermogravimetric analysis (TGA). The result indicates that the weight loss of water from MC film was markedly correlated to the IR spectral changes of OH stretching (3000-3800 cm−1) and bending (1649 cm−1) modes of water molecules. The shift of OH stretching mode from 3461 to 3481 cm−1 was accompanied with the water loss from MC film induced by temperature effect. Two stages of water desorption from MC film were proposed: the first stage within the 35-65 °C had a dramatic IR peak shift from 3461 to 3477 cm−1 and accompanied with a largest weight loss of water from MC film, which might be mainly due to the desorption of free water with minor weakly hydrogen-bonded water; the second stage beyond 65 °C would be desorption of moderately hydrogen-bonded bound water, due to the gradual IR spectral shift from 3477 to 3481 cm−1 and a slower weight loss of water from MC film. The changes in peak area ratio of 1649 cm−1/1374 cm−1 with the temperature also confirmed the IR spectral peak shift of the OH stretching mode via the water loss from MC film. The temperature-dependent dissociation of intermolecular and intramolecular hydrogen bonds within water molecules and/or between water/MC interaction might be responsible for the desorption kinetics of water from MC film.  相似文献   

11.
Polyacrylonitrile (PAN) films were modified with chemical polymerization of conductive polyaniline (PANI) in the presence of potassium dichromate as an oxidizing agent. The effect of aniline concentration on the grafting efficiency and on the electrical surface resistance of PAN and (PAN/PANI)-1-3 composite film was investigated. The surface resistances of the conductive composite films were found to be between 6.32 and 0.97 kΩ/cm. As the amount of grafted PANI increased on the PAN films, the electrical resistance of composite film decreased. The PAN/PANI composite films were also characterized using SEM and FTIR. The changes in the surface properties of the films were characterized by contact angle measurements. As expected, the PAN, PAN/PANI and PAN/PANI-uricase immobilized films, exhibited different contact angle values and surface free energy due to different interactive functional groups of the films.The conductive films were well characterized and used for immobilization of uricase. The amount of adsorbed enzyme increases with the increase of surface concentration of grafted fibrous polyaniline polymer. The maximum amount of immobilized enzyme onto composite film containing 2.4% PANI was about 216 μg/cm2 (i.e., PAN/PANI-3). The immobilized uricase was reused 24 times in batch wise assay in a day. Finally, the immobilized uricase enzyme system was successfully fabricated and applied to determine the uric acid level in human serum samples.  相似文献   

12.
To convert the hydrophilic surface of wood into a hydrophobic surface, the present study investigated activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) as a method of grafting methyl methacrylate (MMA) onto the wood surface. The wood treated with 2-bromoisobutyryl bromide and with the subsequently attached MMA via ARGET ATRP under different polymerization times (2 h, 4 h, 6 h, 8 h) were examined using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. All the analyses confirmed that PMMA had been grafted onto the wood surface. Water contact angle measurement proved that the covering layer of PMMA on wood made the surface hydrophobic. Polymerization time had a positive influence on the contact angle value and higher contact angle can be produced with the prolongation of the polymerization time. When the reaction time was extended to 8 h, the contact angle of treated wood surface reached 130° in the beginning, and remained at 116° after 60 s. The ARGET ATRP method may raise an alteration on the wood surface modification.  相似文献   

13.
Ag-doped ZnO (ZnO:Ag) thin films were grown on glass substrates by E-beam evaporation technique. The structural, electrical and optical properties of the films were investigated as a function of annealing temperature. The films were subjected to post annealing at different temperatures in the range of 350-650 °C in an air ambient. All the as grown and annealed films at temperature of 350 °C showed p-type conduction. The films lost p-type conduction after post annealing treatment temperature of above 350 °C, suggesting a narrow post annealing temperature window for the fabrication of p-type ZnO:Ag films. ZnO:Ag film annealed at 350 °C revealed lowest resistivity of 7.25 × 10−2 Ω cm with hole concentration and mobility of 5.09 × 1019 cm−3 and 1.69 cm2/V s, respectively. Observation of a free-to-neutral-acceptor (e,Ao) and donor-acceptor-pair (DAP) emissions in the low temperature photoluminescence measurement confirms p-type conduction in the ZnO:Ag films.  相似文献   

14.
p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li2CO3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm2 V−1 s−1 and hole concentration of 1.37 × 1018 cm−3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.  相似文献   

15.
Highly conducting and transparent thin films of molybdenum-doped indium oxide were deposited on quartz by pulsed laser deposition. The effect of growth temperature and oxygen partial pressure on the structural, optical and electrical properties was studied. We find that the film transparency depends on the growth temperature. The average transmittance of the films grown at different temperatures is in range of 48-87%. The X-ray diffraction results show that the films grown at low temperature are amorphous while the films grown at higher temperature are crystalline. Electrical properties are found to be sensitive to both the growth temperature and oxygen pressure. Resistivity of the films decreases from 1.3 × 10−3 Ω cm to 8.9 × 10−5 Ω cm while mobility increases from 9 cm2/V s to 138 cm2/V s as the growth temperature increases from room temperature to 700 °C. However, with increase in oxygen pressure, resistivity increases but the mobility decreases after attaining a maximum. The temperature-dependent resistivity measurements show transition form semiconductor to metallic behavior. The film grown at 500 °C under an oxygen pressure of 1.0 × 10−3 mbar is found to exhibit high mobility (250 cm2/V s), low resistivity (6.7 × 10−5 Ω cm), and relatively high transmittance (∼90%).  相似文献   

16.
A significant influence of microstructure on the electrochromic and electrochemical performance characteristics of tungsten oxide (WO3) films potentiostatically electrodeposited from a peroxopolytungstic acid (PPTA) sol has been evaluated as a function of annealing temperature. Powerful probes like X-ray diffractometry (XRD), transmission electron microscopy (TEM), UV-vis spectrophotometry, multiple step chronoamperometry and cyclic voltammetry have been employed for the thin film characterization. The as-deposited and the film annealed at 60 °C are composed of nanosized grains with a dominant amorphous phase, as well as open structure which ensues from a nanoporous matrix. This ensures a greater number of electroactive sites and a higher reaction area thereby manifesting in electrochromic responses superior to that of the films annealed at higher temperatures. The films annealed at temperatures ≥250 °C are characterized by a prominent triclinic crystalline structure and a hexagonal phase co-exists at temperatures ≥400 °C. The deleterious effect on the electrochromic properties of the film with annealing is ascribed to the loss of porosity, densification and the increasing crystallinity and grain size. Amongst all films under investigation, the film annealed at 60 °C exhibits a high transmission modulation (ΔT ∼ 68%) and coloration efficiency (η ∼ 77.6 cm2 C−1) at λ = 632.8 nm, charge storage capacity (Qins ∼ 21 mC cm−2), diffusion coefficient (6.08 × 10−10 cm2 s−1), fast color-bleach kinetics (tc ∼ 275 s and tb ∼ 12.5 s) and good electrochemical activity, as well as reversibility for the lithium insertion-extraction process upon cycling. The remarkable potential, which the film annealed at 60 °C has, for practical “smart window” applications has been demonstrated.  相似文献   

17.
Measurements of advancing contact angles (θ) were carried out for aqueous solutions of Triton X-100 (TX-100) and propanol mixtures at constant TX-100 concentration equal to 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 6 × 10−4 and 1 × 10−3 M, respectively, on polytetrafluoroethylene (PTFE) and polymethyhmethacrylate (PMMA). Using obtained results the changes of cosθ and adhesional tension against surface tension of all series of aqueous solutions of TX-100 and propanol mixtures (γLV) for PTFE and PMMA surfaces were shown. On the basis of these changes it was deduced that adsorption of TX-100 and propanol mixtures at PTFE-solution and solution-air interfaces is the same but the adsorption of TX-100 and propanol mixtures at solution-air interface is considerably higher than at PMMA-solution one. In the case of PTFE this conclusion was confirmed by relationship between cosθ and the reciprocal of the surface tension of solution. Extrapolation of the relationships between cosθ and/or adhesional tension and the surface tension of solutions to the points corresponding to the cosθ = 1 and adhsional tension equal to the surface tension of solution, the critical surface tension of PTFE and PMMA wetting was determined. The average values of critical surface tension of wetting determined from these relationships for PTFE are lying in the range of its surface tension values determined from contact angles of different kinds of liquids, which can be find in the literature, but for PMMA are considerably lower than the surface tension. The double value of the critical surface tension of PTFE wetting is equal to adhesion work of the solution to its surface and for PMMA there is not any correlation between these magnitudes.Using the measured values of the contact angles and Young equation the PTFE(PMMA)-aqueous solution interfacial tension was determined. The interfacial tension values of PTFE-aqueous solution were also calculated from the Fainerman and Miller equation in which the correcting parameter of nonideality of the surface monolayer was introduced and compared to those obtained from Young equation. From this comparison it results that the changes of PTFE-solution interface tension as a function of propanol concentration can be described by the Fainerman and Miller equation.  相似文献   

18.
N-type 4H-SiC (0 0 0 1) surfaces were cleaned by low temperature hydrogen plasma in electronic cyclotron resonance (ECR) microware plasma system. The effects of the hydrogen plasma treatment (HPT) on the structure, chemical and electronic properties of surfaces were characterized by in situ reflection high energy electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS). The RHEED results indicate that the structures of the films are strongly dependent on the treatment temperature and time. Significant improvements in quality of 4H-SiC films can be obtained with the temperature ranging from 200 °C to 700 °C for an appropriate treatment period. The XPS results show that the surface oxygen is greatly reduced and the carbon contamination is completely removed from the 4H-SiC surfaces. The hydrogenated SiC surfaces exhibit an unprecedented stability against oxidation in the air. The surface Fermi level moves toward the conduction band in 4H-SiC after the treatment indicating an unpinning Fermi level with the density of surfaces states as low as 8.09 × 1010 cm−2 eV−1.  相似文献   

19.
By electrochemically controlling the structure of the surface aggregates, the grain microstructure has been optimized to yield mesoporous thin films of tungsten oxide (WO3) at the electrode-electrolyte interface in a peroxotungstate sol in the presence of a structure-directing agent (Triton) at room temperature. Apart from the dominant ultrafine nanocrystallites and pores (5-10 nm), well-developed abutting grains (25-100 nm) and nanofibrils also constitute an integral part of the film matrix. X-ray photoemission spectra reveal the as-deposited film (WO3−x) to be constituted by a high proportion of W6+ states with a low oxygen deficiency (x = 0.02). A relatively high W5+ content in the film, upon intercalation of 18 mC cm−2 charge translates into a large coloring efficiency (ηVIS ∼ 70 cm2 C−1) and transmission modulation. At a lithium intercalation level of 22 mC cm−2, in addition to W5+ and W6+ states, the film also comprises of W4+ states. The extremely fast color-bleach kinetics (3 and 2 s, respectively, for a 50% change in transmittance) shown by the as-deposited WO3 film are repercussions of the mesopore morphology, the multiple nanostructures and the sixfold channels of its hexagonal modification. The film shows a high cycling stability as the switching times do not show any significant decline even after 3500 repetitive cycles. Coloration efficiency over the solar and photopic regions and current density for lithium intercalation for the as-deposited film are superior to that observed for the films annealed at 100, 250 and 500 °C. The abysmal electrochromic response of the annealed films is a consequence of surface defects like cracks and uncontrolled densification and pore shrinkage.  相似文献   

20.
This contribution demonstrates a method for PVDF microporous membrane modification via surface-initiated activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) directly from the membrane surface. Three hydrophilic polymers, poly(2-(N,N-dimethylamino) ethyl methacrylate) (PDMAEMA), poly(2-oligo (ethylene glycol) monomethyl ether methacrylate) (POEGMA), and poly(2-hydroxyethyl methacrylate) (PHEMA), were grafted from the PVDF membrane surface in aqueous solution at room temperature. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the successful covalent tethering of the polymer chains onto the PVDF membrane surface. The gravimetry results indicated an approximately linear increase of the graft yields, up to about 330 μg/cm2 for DMAEMA and 470 μg/cm2 for both HEMA and OEGMA, with the polymerization time. Block copolymer brushes were prepared by chain extension. Water contact angle decreased over 50% for high yields, indicating improved surface hydrophilicity. The effects of the graft polymerization on membrane surface morphology, pore structure and permeability were investigated. It was found that the surface roughness was decreased and the pore size distribution was narrowed. The membrane permeability increased at low graft yields due to the enhanced hydrophilicity and decreased at high graft yields due to the overall reduction of the pore diameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号