首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Mercury porosimetry has been applied to characterize the pore structure of fine coals particles. Interparticle voids and compressibility effects on the mercury intrusion data were examined. It is found that coal compressibility has a significant effect on mercury porosimetry data when pressure P>20 MPa. The compressibility of the two coals used was determined to be 3.13×10−10 m2 N−1 and 2.50×10−10 m2 N−1 for CA and GO coals, respectively. Fractal dimension analysis provides a “fingerprint” to distinguish the effect of coal compression from the pore filling process during mercury intrusion. It is shown that fractal dimension can be evaluated from the compressibility corrected pore volume data. Results from the present study suggest that statistic self-similarity of the fractal dimension perspective is limited by certain artificial effects, such as crushing and grinding. Different surface irregularities exist over different pore size ranges, and a single fractal dimension value can only be used to describe the surface irregularity within a limited pore size range. The average fractal dimensions in the pore size range of 6–60 nm were found to be 2.71 and 2.43 for CA and GO coals, respectively.  相似文献   

2.
In this paper, textural characterization of an activated carbon derived from carbonized coconut shell char obtained at carbonization temperature of 600 °C for 2 h by CO2 activation was investigated. The effects of activation temperature, activation time and flow rate of CO2 on the BET surface area, total volume, micropore volume and yield of activated carbons prepared were evaluated systematically. The results showed that: (i) enhancing activation temperature was favorable to the formation of pores, widening of pores and an increase in mesopores; (ii) increasing activation time was favorable to the formation of micropores and mesopores, and longer activation time would result in collapsing of pores; (iii) increasing flow rate of CO2 was favorable to the reactions of all active sites and formation of pores, further increasing flow rate of CO2 would lead carbon to burn out and was unfavorable to the formation of pores. The degree of surface roughness of activated carbon prepared was measured by the fractal dimension which was calculated by FHH (Frenkel-Halsey-Hill) theory. The fractal dimensions of activated carbons prepared were greater than 2.6, indicating the activated carbon samples prepared had very irregular structures, and agreed well with those of average micropore size.  相似文献   

3.
The surface fractal dimensions of high-volume fly-ash cement pastes are evaluated for their hardening processes on the basis of mercury intrusion porosimetry (MIP) data. Two surface fractal models are retained: Neimark's model with cylindrical pore hypothesis and Zhang's model without pore geometry assumption. From both models, the logarithm plots exhibit the scale-dependent fractal properties and three distinct fractal regions (I, II, III) are identified for the pore structures. For regions I and III, corresponding to the large (capillary) and small (C-S-H inter-granular) pore ranges respectively, the pore structure shows strong fractal property and the fractal dimensions are evaluated as 2.592-2.965 by Neimark's model and 2.487-2.695 by Zhang's model. The fractal dimension of region I increases with w/b ratio and hardening age but decreases with fly-ash content by its physical filling effect; the fractal dimension of region III does not evolve much with these factors. The region II of pore size range, corresponding to small capillary pores, turns out to be a transition region and show no clear fractal properties. The range of this region is much influenced by fly-ash content in the pastes. Finally, the correlation between the obtained fractal dimensions and pore structure evolution is discussed in depth.  相似文献   

4.
Cedar wood was used as raw material for the preparation of activated carbons by treatment with hydrogen peroxide of different concentrations. The samples were next carbonised and activated under CO2 atmosphere. The activated carbons were characterised by means of the adsorption isotherms of N2 at 77 K, as well as by applying the Density Functional Theory (DFT) method and mercury porosimetry. The experimental results corresponding to the activated samples indicate a more remarkable porous development as a consequence of the treatment with hydrogen peroxide, probably due to the elimination of surface complexes produced during the activation step. The DFT diagrams point out that the activating treatment favours the development of medium and narrow-size micropores whereas the carbonisation process leads to the development of wide micropores of size close to that corresponding to mesopores.  相似文献   

5.
6.
7.
The development and change of surface ruggedness in chars was studied at conditions typical in a pulverized coal furnace. The fractal dimension, a measure of surface ruggedness, of chars was measured using physisorption techniques. By adjusting the temperature encountered (1173 to 1773 K) and residence time (0.1 to 1.5 s) of the synthetic coal (sized to 46–106 μm diameter), chars at different stages of combustion were prepared in a laminar flow (drop-tube) furnace. The particles were quickly cooled and quenched in an inert atmosphere. The samples were examined using a scanning electron microprobe, and their fractal dimensions were determined using gas physisorption. The adsorption data were used to test if the char surface was fractal on a molecular scale, to determine the fractal dimension, and to quantify changes in the fractal dimension during combustion. The fractal dimension of the unburned synthetic coal was approximately 2. The fractal dimension increased as high as 2.85 as the carbon matrix burned away and exposed mineral moieties. However, as combustion continued the carbon burned completely away leaving a mineral fly ash particle with a fractal dimension as low as 2.47.  相似文献   

8.
In classic carbon supports is very difficult to control pore size, pore size distribution, and surface chemical properties at the same time. In this work microporous carbons derived from furfuryl alcohol are used as support to prepare Ni-doped carbon materials. The N2 flow rate used during the carbonisation process of the precursor influences on the size of the nanospheres obtained but not in their textural properties. Microporous carbon nanospheres have been synthesised with a narrow pore size distribution centred in 5.5 Å. The surface chemistry of these materials can be easily modified by different treatments without detriment of the pore structure of the doped carbon nanospheres.  相似文献   

9.
煤干馏是煤炭高效利用的重要途径之一。同步辐射小角X射线散射(Small Angle X-Ray Scattering,SAXS)技术是研究煤干馏过程中内部孔隙结构变化的常用手段。本文利用SAXS对山西余吾烟煤干馏过程(100~1200℃,温度梯度100℃)进行了表征,并对分形维数和粒径分布的变化进行了分析。结果发现煤干馏过程中,散射图像类似,具有各向同性特征,始终保持表面分形结构,且分形维数总体上呈现增大的趋势;随着煤干馏温度的升高,粒度分布发生了显著变化,充分反映了煤在不同干馏阶段的结构特征,对后续的煤炭研究具有一定的指导意义。  相似文献   

10.
The effect of oxidation by 20% nitric acid on the properties and performance of active carbons enriched with nitrogen by means of the reaction with urea in the presence of air has been studied. The study has been made on demineralised orthocoking coal and the carbonisates obtained from it at 600 or 700 °C, subjected to the processes of nitrogenation, oxidation and activation with KOH in different sequences. The amount of nitrogen introduced into the carbon with the aid of urea has been found to depend on the stage at which the process of nitrogenation was performed. The process of oxidation of the demineralised coal and the active carbon obtained from the former has been found to favour nitrogen introduction into the carbon structure. In the process of nitrogenation of the carbonisates the amount of nitrogen introduced has inversely depended on the temperature of carbonisation. The modifications of the processes permitted obtaining materials of different textural parameters, different acid-base character of the surface and different iodine sorption capacity.  相似文献   

11.
The structure of high-silica glassy nanoporous matrices prepared from two-phase glasses has been investigated using the small-angle X-ray scattering technique. Parameters of materials, such as the density, porosity, specific surface area, average nanopore radius, average radius of scattering particles filling the pore space, and their fractal dimensions, have been determined. The dependence of the obtained structural parameters on the conditions of chemical treatment of glasses has been established. It has been demonstrated that the results obtained are in good agreement with porosimetry and electron microscopy data.  相似文献   

12.
Coal-based honeycomb monoliths extruded using methods developed for ceramic materials have been used to retain methylene blue and p-nitrophenol from aqueous solutions. The influence of the filters’ thermal treatment on their textural properties and performance as adsorbents was examined. Characterization by N2 physisorption, mercury porosimetry and scanning electron microscopy along with adsorption tests under dynamic conditions suggest that, depending on the pollutant and its initial concentration, it can be more convenient to previously submit the monoliths to a simple carbonization or to an additional activation, with or without preoxidation, as a consequence of their different resulting pore structures. Infrared spectroscopy indicates that their different adsorption behaviour seems not to be related to differences in their surface chemical groups. In addition, axial crushing tests show that the monoliths have an acceptable mechanical resistance for the application investigated.  相似文献   

13.
This paper reports the small-angle X-ray scattering (SAXS) study and flow- rate measurements of semipermeable porous polysulfone (PS) and sulfonated polycarbonate-doped polysulfone (SPC-PS) membranes. Flow rates of sodium chloride, sodium sulfate, and polyethylene glycol solutions through these membranes have been measured. For all the solutions, the flux through the SPC-PS membrane was found to be close to 1.65 times that through the PS membrane. SAXS measurements show that the pore morphologies of two membranes are mass fractal in nature with different fractal dimensions. The difference in flow rates through these membranes is explained in terms of porosity and fractal dimension.  相似文献   

14.
多相燃烧分形模型及其实验研究   总被引:1,自引:0,他引:1  
本文提出了多相燃烧的分形模型.模型中认为在多相燃烧中内部孔洞体积与表面积存在分维指数关系,而且反应面积的增长为两种分形增长模式的叠加.结合孔洞合并的因素得到了描述煤多相反应速率的分形模型.该模型描述的反应速率先增加后减少的规律与实验结果十分相符.对五个煤种和其中两个煤焦样品进行了试验研究,在两个不同升温速率下得出的试验数据与理论计算相符.  相似文献   

15.
Preparation of activated carbons by microwave heating KOH activation   总被引:2,自引:0,他引:2  
Activated carbons with high surface areas were prepared via KOH activation process by microwave (MW) heating. As a comparison, activated carbons were also prepared by conventional heating (EF) method. The influences of KOH/Mesocarbon microbeads (MCMB) weight ratio and activation time on the pore properties of the activated carbons were investigated. For both MW and EF heating methods, the surface area and pore volume increase to a maximum and then decrease with the KOH/MCMB ratio increasing. The effects of activation time on the pore properties depend on the KOH/MCMB ratio. The activated carbons prepared by MW heating have higher surface area and larger pore volume than those by EF heating when KOH/MCMB ratio is the same. The MW heating method shortens the activation time considerably. Activated carbons prepared by MW heating show low content of oxygen containing groups.  相似文献   

16.
The control of the surface chemistry of activated carbon by ozone and heat treatment is investigated. Using cherry stones, activated carbons were prepared by carbonization at 900 °C and activation in CO2 or steam at 850 °C. The obtained products were ozone-treated at room temperature. After their thermogravimetric analysis, the samples were heat-treated to 300, 500, 700 or 900 °C. The textural characterization was carried out by N2 adsorption at 77 K, mercury porosimetry, and density measurements. The surface analysis was performed by the Bohem method and pH of the point of zero charge (pHpzc). It has been found that the treatment of activated carbon with ozone combined with heat treatment enables one to control the acidic-basic character and strength of the carbon surface. Whereas the treatment with ozone yields acidic carbons, carbon dioxide and steam activations of the carbonized product and the heat treatment of the ozone-treated products result in basic carbons; the strength of a base which increases with the increasing heat treatment temperature. pHpzc ranges between 3.6 and 10.3.  相似文献   

17.
Activated carbons were prepared from cattle manure compost (CMC) using zinc chloride activation. The structural and surface chemical characteristics of CMC-based activated carbons were determined by N2 adsorption-desorption and Boehm titration, respectively. The water vapor adsorption properties of the prepared activated carbons with various pore structure and surface nature were examined, and the mechanism of water adsorbed onto activated carbon was also discussed. The results show that the adsorption of water vapor on carbons begins at specific active sites at low relative humidity (RH), followed by micropore filling at medium RH through the formation of pentamer cluster of water molecules in the narrow micropores. The water vapor adsorption capacity of activated carbon is predominantly dependent on its pore volume and surface area. Although capillary condensation is not the mechanism for water adsorption onto activated carbon, water can adsorb on narrow mesopore to some extent.  相似文献   

18.
Activated carbons were prepared from granulated post-consumer PET by combined activation including heat treatment with sulphuric acid (chemical activation) followed by steam activation. The effect of activation time, temperature, impregnation coefficient in the activation process was studied in order to optimize those reception parameters. One of the most important parameter in combined activation of crushed PET was found to be impregnation coefficient. It was defined that the optimal impregnation coefficient is equal 28%. Activation temperature is another variability which has a significant effect on the pore volume evolution. The increasing of activation temperature enhances the surface area and pore volumes of active carbons. The yield of final product which composes of nearly 15% is the factor limited the activation temperature above 800 °C. Textural characteristics of the samples were carried out by performing N2 adsorption isotherm at −196 °C. The obtained active carbons were mainly micro- and mesoporous and with BET apparent surface areas of up to 1030 m2/g. The adsorption capacity on methylene blue reaches 1.0 mmol/g, the sorption activity on iodine comes to 77%.  相似文献   

19.
Cherry stones (CS), an industrial product generated abundantly in the Valle del Jerte (Cáceres province, Spain), were used as precursor in the preparation of activated carbon by chemical activation with ZnCl2. The influence of process variables such as the carbonisation temperature and the ZnCl2:CS ratio (impregnation ratio) on textural and chemical-surface properties of the products obtained was studied. Such products were characterised texturally by adsorption of N2 at −196 °C, mercury porosimetry and density measurements. Information on the surface functional groups and structures of the carbons was provided by FT-IR spectroscopy. Activated carbon with a high development of surface area and porosity is prepared. When using the 4:1 impregnation ratio, the specific surface area (BET) of the resultant carbon is as high as 1971 m2 g−1. The effect of the increase in the impregnation ratio on the porous structure of activated carbon is stronger than that of the rise in the carbonisation temperature, whereas the opposite applies to the effect on the surface functional groups and structures.  相似文献   

20.
Lime-mortars to be used in restoration works of Cultural Heritage are being more and more studied. The knowledge on the lime-pastes allows understanding the behaviour of the binder fraction. The aim of this work is to study the influence of the kneading water on two critical aspects of the lime-pastes: pore structure and capillary porosity, because both of them are related to the service life of the material, particularly with the moisture transport. Mercury intrusion porosimetry has been performed to establish the pore size distribution: one pore range has been checked in the different pastes tested, setting linear relationships between the pore diameter and the water/lime ratio.Fractal geometry has been used from the MIP results in order to evaluate the pore surface complexity, as a function of the kneading water. From the results, it can be concluded that kneading water is only responsible for a swelling of the structure, but it does not change the pore surface (keeping constant the surface fractal dimension). DIA analysis has been carried out, confirming the previous results. Finally, the correlation obtained between the capillary coefficient and the water/lime ratio confirms the postulated pore structure for the different amount of kneading water in lime-pastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号