首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The adsorption of diethylamine (DEA) on Si(1 0 0) at 100 K was investigated using high-resolution electron energy loss spectroscopy (HREELS) and electron stimulated desorption (ESD). The thermal evolution of DEA on Si(1 0 0) was studied using temperature programmed desorption (TPD). Our results demonstrate DEA bonds datively to the Si(1 0 0) surface with no dissociation at 100 K. Thermal desorption of DEA takes place via a β-hydride elimination process leaving virtually no carbon behind. Electronic processing of DEA/Si(1 0 0) at 100 K results in desorption of ethyl groups; however, carbon and nitrogen are deposited on the surface as a result of electron irradiation. Thermal removal of carbon and nitrogen was not possible, indicating the formation of silicon carbide and silicon nitride.  相似文献   

2.
A.P. Farkas 《Surface science》2007,601(1):193-200
The adsorption, desorption and dissociation of ethanol have been investigated by work function, thermal desorption (TPD) and high resolution electron energy loss (HREELS) spectroscopic measurements on Mo2C/Mo(1 0 0). Adsorption of ethanol on this sample at 100 K led to a work function decrease suggesting that the adsorbed layer has a positive outward dipole moment By means of TPD we distinguished three adsorption states, condensed layer with a Tp = 162 K, chemisorbed ethanol with Tp = 346 K and irreversibly bonded species which decomposes to different compounds. These are hydrogen, acetaldehyde, methane, ethylene and CO. From the comparison of the Tp values with those obtained following their adsorption on Mo2C it was inferred that the desorption of methane and ethylene is reaction limited, while that of hydrogen is desorption limited process. HREEL spectra obtained at 100 K indicated that at lower exposure ethanol undergoes dissociation to give ethoxy species, whereas at high exposure molecularly adsorbed ethanol also exists on the surface. Analysis of the spectral changes in HREELS observed for annealed surface assisted to ascertain the reaction pathways of the decomposition of adsorbed ethanol.  相似文献   

3.
X.J. Zhou 《Surface science》2006,600(16):3285-3296
The room temperature (RT) adsorption of 1,2-difluorobenzene (1,2-DFB), 1,2-dichlorobenzene (1,2-DCB) and 1,2-dibromobenzene (1,2-DBB) on Si(1 0 0)2 × 1 have been investigated by X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Both XPS and TPD data show that the relative degree of dissociative to associative adsorption of the dihalogenated benzene (DXB) appears to increase with decreasing electronegativity of the halogen atom (X). In particular, the C 1s intensity ratios for the C-H and C-Si components to the C-X component are found to be 2, 3 and 9.6 for 1,2-DFB, 1,2-DCB and 1,2-DBB, respectively. These results indicate that 1,2-DFB, like benzene, exclusively adsorbs molecularly as a difluorocyclohexadiene adspecies on Si(1 0 0)2 × 1 while 1,2-DBB adsorbs predominantly with double debromination to form 1,2-phenylene. The majority of 1,2-DCB (75%) is found to adsorb molecularly, with the rest (25%) undergone single or double dechlorination to form chlorophenyl and phenylene, respectively. All three DXB molecules appear to have similar coverage as benzene. The two molecular desorption features for 1,2-DFB and 1,2-DCE are observed with desorption maxima at 460 K and 540 K similar to those found for benzene, which suggests that the dihalocyclohexadiene adstructures involve similar bonding through the benzene ring. In accord with the XPS data, no molecular desorption feature is observed for 1,2-DBB on the 2 × 1 surface. Further decomposition of the resulting phenylene adstructures is evident from the desorption fragment, C2H2, found at 610 K and 740 K. Recombinative desorption of HCl and HBr above 880 K are also found for 1,2-DCB and 1,2-DBB, respectively. The observed differences between associative and dissociative adsorption for the three DXB adsorbates could be attributed not only to the large difference in the C-X bond strength but also to the relative contributions from inductively withdrawing and resonantly donating electrons exerted by the halogen (X) atoms to the benzene ring.  相似文献   

4.
Yunsheng Ma 《Surface science》2009,603(7):1046-1391
The formation, stability and CO adsorption properties of PdAg/Pd(1 1 1) surface alloys were investigated by X-ray photoelectron spectroscopy (XPS) and by adsorption of CO probe molecules, which was characterized by temperature-programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The PdAg/Pd(1 1 1) surface alloys were prepared by annealing (partly) Ag film covered Pd(1 1 1) surfaces, where the Ag films were deposited at room temperature. Surface alloy formation leads to a modification of the electronic properties, evidenced by core-level shifts (CLSs) of both the Pd(3d) and Ag(3d) signal, with the extent of the CLSs depending on both initial Ag coverage and annealing temperature. The role of Ag pre-coverage and annealing temperature on surface alloy formation is elucidated. For a monolayer Ag covered Pd(1 1 1) surface, surface alloy formation starts at ∼450 K, and the resulting surface alloy is stable upon annealing at temperatures between 600 and 800 K. CO TPD and HREELS measurements demonstrate that at 120 K CO is exclusively adsorbed on Pd surface atoms/Pd sites of the bimetallic surfaces, and that the CO adsorption behavior is dominated by geometric ensemble effects, with adsorption on threefold hollow Pd3 sites being more stable than on Pd2 bridge sites and finally Pd1 a-top sites.  相似文献   

5.
The reaction of formic acid on Si(1 1 1)-7 × 7 was investigated using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and high-resolution electron energy loss spectroscopy (HREELS). The hydroxyl and carbonyl O 1s core levels of chemisorbed formic acid display chemical shifts of 2.4 and 0.2 eV respectively, compared with those of physisorbed molecules. The HREELS spectra of chemisorbed formic acid show the absence of stretching and bending modes of the O-H bond, the appearance of Si-H (2089 cm−1) and the Si-O (680 cm−1) stretching modes and the retained stretching mode of CO at 1703 cm−1. Our results clearly suggest that formic acid dissociates to form monodentate formate species and H-atom on the adatom-rest atom pair of Si(1 1 1)-7 × 7.  相似文献   

6.
The intermediates of thermal decomposition of 1,3-disilabutane (SiH3CH2SiH2CH3, DSB) to form SiC on Si(1 0 0) surface were in situ investigated by reactive ion scattering (RIS), temperature programmed reactive ion scattering (TPRIS), temperature programmed desorption (TPD), and auger electron spectroscopy (AES). DSB as a single molecular precursor was exposed on Si(1 0 0) surface at a low temperature less than 100 K, and then the substrate was heated up to 1000 K. RIS, TPD, and AES investigations showed that DSB adsorbed molecularly and decomposed to SiC via some intermediates on Si(1 0 0) surface as substrate temperature increasing. Between 117 and 150 K molecularly adsorbed DSB desorbed partially and decomposed to CH4Si2, which is the first observation on Si(1 0 0) surface, and further decomposed to CH4Si between 150 and 900 K. CH4Si lost hydrogen and formed SiC over 900 K.  相似文献   

7.
Eldad Herceg 《Surface science》2006,600(19):4563-4571
The formation of a well-ordered p(2 × 2) overlayer of atomic nitrogen on the Pt(1 1 1) surface and its reaction with hydrogen were characterized with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The p(2 × 2)-N overlayer is formed by exposure of ammonia to a surface at 85 K that is covered with 0.44 monolayer (ML) of molecular oxygen and then heating to 400 K. The reaction between ammonia and oxygen produces water, which desorbs below 400 K. The only desorption product observed above 400 K is molecular nitrogen, which has a peak desorption temperature of 453 K. The absence of oxygen after the 400 K anneal is confirmed with AES. Although atomic nitrogen can also be produced on the surface through the reaction of ammonia with an atomic, rather than molecular, oxygen overlayer at a saturation coverage of 0.25 ML, the yield of surface nitrogen is significantly less, as indicated by the N2 TPD peak area. Atomic nitrogen readily reacts with hydrogen to produce the NH species, which is characterized with RAIRS by an intense and narrow (FWHM ∼ 4 cm−1) peak at 3322 cm−1. The areas of the H2 TPD peak associated with NH dissociation and the XPS N 1s peak associated with the NH species indicate that not all of the surface N atoms can be converted to NH by the methods used here.  相似文献   

8.
We utilized temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS), and low energy electron diffraction (LEED) to investigate the oxidation of Pt(1 0 0)-hex-R0.7° at 450 K. Using an oxygen atom beam, we generated atomic oxygen coverages as high as 3.6 ML (monolayers) on Pt(1 0 0) in ultrahigh vacuum (UHV), almost 6 times the maximum coverage obtainable by dissociatively adsorbing O2. The results show that oxidation occurs through the development of several chemisorbed phases prior to oxide growth above about 1 ML. A weakly bound oxygen state that populates as the coverage increases from approximately 0.50 ML to 1 ML appears to serve as a necessary precursor to Pt oxide growth. We find that increasing the coverage above about 1 ML causes Pt oxide particle growth and significant surface disordering. Decomposition of the Pt oxide particles produces explosive O2 desorption characterized by a shift of the primary TPD feature to higher temperatures and a dramatic increase in the maximum desorption rate with increasing coverage. Based on thermodynamic considerations, we show that the thermal stability of the surface Pt oxide on Pt single crystal surfaces significantly exceeds that of bulk PtO2. Furthermore, we attribute the high stability and the acceleratory decomposition rates of the surface oxide to large kinetic barriers that must be overcome during oxide formation and decomposition. Lastly, we present evidence that structurally similar oxides develop on both Pt(1 1 1) and Pt(1 0 0), therefore concluding that the properties of the surface Pt oxide are largely insensitive to the initial structure of the Pt single crystal surface.  相似文献   

9.
Temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the adsorption and photon-induced decomposition of Mo(CO)6. Mo(CO)6 adsorbs molecularly on a Pt(1 1 1) surface with weak interaction at 100 K and desorbs intact at 210 K without undergoing thermal decomposition. Adsorbed Mo(CO)6 undergoes decarbonylation to form surface Mo(CO)x (x ? 5) under irradiation of ultraviolet light. The Mo(CO)x species can release further CO ligands to form Mo adatoms with CO desorption at 285 K. In addition, a fraction of the released CO ligands transfers onto the Pt surface and subsequently desorbs at 350-550 K. The resulting Mo layer deposited on the Pt surface is nearly free of contamination by C and O. The deposited Mo adatoms can diffuse into the bulk Pt at temperatures above 1070 K.  相似文献   

10.
A.P. Farkas  F. Solymosi 《Surface science》2006,600(11):2355-2363
The adsorption and surface reactions of propyl iodide on clean and potassium-modified Mo2C/Mo(1 0 0) surfaces have been investigated by thermal desorption spectroscopy (TPD), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS) in the 100-1200 K temperature range. This work is strongly related to the better understanding of the catalytic effect of Mo2C in the conversion of hydrocarbons. Potassium was found to be an effective promoter: it induced the rupture of C-I bond in the adsorbed C3H7I even at 100 K. The extent of C-I bond scission varied approximately linearly with the concentration of K coverage at the adsorption temperature of 100 K. As revealed by HREELS and TPD measurements the primary products of the dissociation are C3H7 and I. The former one was stabilized by potassium and underwent dehydrogenation and hydrogenation to give propene and propane. The desorption of both compounds is reaction-limited process. A fraction of propyl groups was converted into di-σ-bonded propene, which was stable up to ∼380 K. The coupling reaction of propyl species was also facilitated by potassium and resulted in the formation of hexane and hexene with Tp ∼ 230-250 K. Hydrogen was released with Tp = 390 K, indicative of a desorption limited process. The effect of potassium was explained by the extended electron donation to adsorbed propyl iodide in one hand, and by the direct interaction between potassium and I on the other hand. This was reflected by the shift of the desorption of potassium from the coadsorbed layer at and above 1.0 ML to higher temperature, and by the coincidal Tp values (∼700 K) of potassium and iodine. The formation of KI was also supported by the appearance of a loss feature at 650 cm−1 in the HREEL spectra attributed to a phonon mode of KI.  相似文献   

11.
J. Wang  E.I. Altman 《Surface science》2007,601(16):3497-3505
The oxidation of Pd(1 0 0) by an oxygen plasma was characterized using X-ray photoelectron spectroscopy (XPS), low energy ion scattering spectroscopy (ISS), temperature programmed desorption (TPD), and low energy electron diffraction (LEED). The oxygen uptake followed a typical parabolic profile with oxygen coverages reaching 32 ML after 1 h in the plasma; a factor of 40 higher than could be achieved by dosing molecular oxidants in ultra high vacuum. Even after adsorbing 32 ML of oxygen, XPS revealed both metallic Pd and PdO in the surface region. The R27o LEED pattern previously attributed to a surface oxide monolayer, slowly attenuated with oxygen coverage indicating that the PdO formed poorly ordered three dimensional clusters that slowly covered the ordered surface oxide. While XPS revealed the formation of bulk PdO, only small changes in the ISS spectra were observed once the surface oxide layer was completed. The leading edges of the O2 TPD curves showed only small shifts with increasing oxygen coverage that could be explained in terms of the lower thermodynamic stability of small oxide clusters. The desorption curves, however, could not be adequately described as simple zero order decomposition of PdO. There has been an ongoing debate in the literature about the relative catalytic activities of PdO and oxygen phases on Pd, the results indicate that any differences in the reactivity between bulk PdO and surface oxides are not associated with differences in the density of exposed Pd atoms or the decomposition kinetics of these two phases.  相似文献   

12.
The adsorption of naphthalene, vacuum deposited on a Ag(1 0 0) surface, was comprehensively investigated by means of low-energy electron diffraction (LEED), temperature-programmed thermal desorption (TPD) spectroscopy, X-ray photoelectron spectroscopy (XPS), and polarization-dependent near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the mono- and multilayer regime. A growth of long-range ordered monolayer at 140 K is observed with LEED. The polarization-dependent C 1s NEXAFS shows that the naphthalene molecules in the monolayer lie almost parallel to the Ag(1 0 0) surface. With increasing film thickness, the molecular orientation turns to upright position. Furthermore, NEXAFS measurements show that in the multilayer regime the molecular orientation depends on the substrate temperature during deposition.  相似文献   

13.
Behavior of N atoms in atomic-order nitrided Si0.5Ge0.5(1 0 0) by heat treatment in Ar at 600 °C was investigated by X-ray photoelectron spectroscopy (XPS). For thermal nitridation by NH3 at 400 °C, nitridation of surface Si atoms tends to proceed preferentially over nitridation of surface Ge atoms. It is also clear that, with the heat treatment, nitridation of Si atoms proceeds by transfer of N atoms from Ge atoms. Angle-resolved XPS results show that Ge fraction beneath the surface nitrided layer increases significantly at 600 °C compared to the initial surface. These results indicate that preferential nitridation of Si atoms at surface over Ge atoms induces Ge segregation beneath the surface nitrided layer at higher temperatures above 400 °C.  相似文献   

14.
X.J. Zhou 《Surface science》2006,600(2):468-477
The room temperature (RT) chemisorption of three (iso, cis and trans) isomers of dichloroethylene (DCE) on Si(1 0 0)2 × 1 have been investigated by X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Unlike ethylene, the lack of molecular desorption features in the TPD data effectively rules out the cycloaddition adsorption mechanism for all three isomers. XPS spectra show that cis- and trans-DCE adsorb dissociatively on the 2 × 1 surface in equal proportion as mono-σ bonded 2-chlorovinyl and di-σ bonded vinylene adspecies, which could be produced by dechlorination mechanisms involving the proposed tri-atom π-complex and diradical intermediates, respectively. Acetylene (m/z 26) evolution from 2-chlorovinyl adspecies at 590 K and vinylene at 750 K are also observed for both cis- and trans-DCE, further confirming the common adsorption mechanisms for these geometrical isomers and the relative stabilities of the adspecies. In contrast, only vinylidene adspecies is found for iso-DCE, which indicates that the high ionicity of the CCl2 group favours the diradical dechlorination mechanism. The single m/z 26 desorption peak for iso-DCE adspecies observed at a higher temperature (780 K) than cis and trans isomers is consistent with the higher adsorption energy of vinylidene than vinylene on Si(1 0 0) obtained in our ab initio calculations. The different relative locations of the Cl atoms in these isomers therefore play a crucial role in controlling the adsorption and thermal evolution on Si(1 0 0)2 × 1. The selective reactivity of the 2 × 1 surface towards these isomers can be used to generate vinylene or vinylidene templates from their corresponding adspecies.  相似文献   

15.
The InSb(0 0 1) surfaces chemically treated in HCl-isopropanol solution and annealed in vacuum were studied by means of X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and electron energy-loss spectroscopy (EELS). The HCl-isopropanol treatment removes indium and antimony oxides and leaves on the surface about 3 ML of physisorbed overlayer, containing indium chlorides and small amounts of antimony, which can be thermally desorbed at 230 °C. The residual carbon contaminations were around 0.2-0.4 ML and consisted of the hydrocarbon molecules. These hydrocarbon contaminations were removed from the surface together with the indium chlorides and antimony overlayer. With increased annealing temperature, a sequence of reconstructions were identified by LEED: (1 × 1), (1 × 3), (4 × 3), and (4 × 1)/c(8 × 2), in the order of decreasing Sb/In ratio. The structural properties of chemically prepared InSb(0 0 1) surface were found to be similar to those obtained by decapping of Sb-capped epitaxial layers.  相似文献   

16.
Surface chemistry of nitrobenzene on Si(1 0 0)-2 × 1 has been investigated using multiple internal reflection Fourier-transform infrared spectroscopy (MIR-FTIR), Auger electron spectroscopy (AES) and thermal desorption mass spectrometry. Molecular adsorption of nitrobenzene at submonolayer coverages is dominating at cryogenic temperatures (100 K). As the surface temperature is increased to 160 K, chemical reaction involving nitro group occurs, while the phenyl entity remains intact. Thus, a barrier of approximately 40.8 kJ/mol is established for the interaction of the nitro group of nitrobenzene with the Si(1 0 0)-2 × 1 surface. Further annealing of the silicon surface leads to the decomposition of nitrobenzene. The concentration of nitrogen and oxygen remains constant on a surface within the temperature interval studied here. AES studies also suggest that the majority of carbon-containing products remain bound to the surface at temperatures as high as 1000 K. The only chemical reaction leading to the release of the gaseous products is benzene formation around 670 K. The amount of benzene accounts only for a few percent of the surface species, while the rest of the phenyl groups connected to the silicon surface via a nitrogen linker remain stable even at elevated temperatures, opening an opportunity for stable surface coatings.  相似文献   

17.
Adsorption, decomposition and oxidation of benzene on Ir(1 1 1) was studied by high resolution (synchrotron) XPS, temperature programmed desorption and low energy electron diffraction. Molecular adsorption of benzene on Ir(1 1 1) is observed between 170 K and 350 K. Above this temperature both desorption and decomposition of benzene take place. An ordered adsorbate structure was observed upon adsorption around 335 K. Decomposition involves C-C bond breaking as the formation of CHad is observed. The presence of a saturated Oad layer (0.5 ML) weakens molecular benzene adsorption and suppresses decomposition.  相似文献   

18.
The desorption kinetics of hydrogen from polished 6H-SiC(0 0 0 1) surfaces exposed to various sources of hydrogen have been determined using temperature programmed desorption (TPD). For (3 × 3) 6H-SiC(0 0 0 1) surfaces prepared via annealing and cooling in SiH4, desorption of 0.2 ± 0.05 monolayer of molecular hydrogen was observed to occur at ≈590 °C. This β1 H2 desorption peak exhibited second order kinetics with an activation energy of 2.4 ± 0.2 eV. For (3 × 3) 6H-SiC surfaces exposed to atomic hydrogen generated via either a hot rhenium filament or remote hydrogen plasma, low energy electron diffraction patterns showed an eventual conversion back to (1 × 1) symmetry. Spectra acquired using Auger electron and X-ray photoelectron spectroscopies revealed that the atomic hydrogen exposure removed the excess Si. Photoelectron spectroscopy results also showed a 0.5 eV increase in binding energy for the Si2p and C1s core levels after removal of the Si-Si bilayer that is indicative of a decrease in band bending at the SiC surface. TPD from the (3 × 3) 6H-SiC(0 0 0 1) surfaces exposed to atomic hydrogen showed substantially more molecular hydrogen desorption (1-2 ML) through the appearance of a new desorption peak (β2,3) that started at ≈200 °C. The β2,3 peak exhibited second order desorption kinetics and a much lower activation energy of 0.6 ± 0.2 eV. A third smaller hydrogen desorption state was also detected in the 650-850 °C range. This last feature could be resolved into two separate desorption peaks (α1 and α2) both of which exhibited second order kinetics with activation energies of 4.15 ± 0.15 and 4.3 ± 0.15 eV, respectively. Based on comparisons to hydrogen desorption from Si and diamond surfaces, the β and α desorption peaks were assigned to hydrogen desorption from Si and C sites, respectively.  相似文献   

19.
We report on the adsorption and decomposition of NO on O-covered planar Ir(2 1 0) and nanofaceted Ir(2 1 0) with variable facet sizes investigated using temperature programmed desorption (TPD), high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT). When pre-covered with up to 0.5 ML O, both planar and faceted Ir(2 1 0) exhibit unexpectedly high reactivity for NO decomposition. Upon increasing the oxygen coverage to 0.7 ML O, planar Ir(2 1 0) has little activity while faceted Ir(2 1 0) still remains active toward NO decomposition, although NO decomposition is completely inhibited when both surfaces are pre-covered by 1 ML O. NO molecularly adsorbs on O-covered Ir at 300 K. At low NO and oxygen coverage, NO adsorbs on the atop sites of planar Ir(2 1 0) while on the bridge and atop sites of faceted Ir(2 1 0) composed of (1 1 0) and {3 1 1} faces. No evidence for size effects in the decomposition of NO on O-covered faceted Ir(2 1 0) is observed for average facet size in the range 5-14 nm. Our findings should be of importance for development of Ir-based catalysts for NO decomposition under oxygen-rich conditions.  相似文献   

20.
The covalent attachment of alkyl groups to silicon surfaces, via carbon-silicon bond formation, has been attempted using gas-surface reactions starting from Cl-terminated Si(1 1 1) or H:Si(1 1 1) under ultraviolet light irradiation. The formation of Cl-terminated Si(1 1 1) and its resulting stability were examined prior to deposition of organic molecules. High-resolution electron energy loss spectroscopy (HREELS) was utilized for detecting surface-bound adsorbates. The detection of photo-deposited organic species on Cl:Si(1 1 1) from gas-phase CH4 or CH2CH2 was not significant. On H:Si(1 1 1), it was evident that after the photoreaction with gas-phase C2H5Cl, C2H5 groups were chemically bonded to the surface Si atoms through single covalent bonds. The C2H5 groups were thermally stable at temperatures below 600 K. Alkyl monolayers prepared on silicon surfaces by dry process will lead to a new prospective technology of nanoscale fabrication and biochemical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号