首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work is to obtain the electroplating parameters for preparation of Ni-W/Al2O3 composite coating with high tungsten content, high micro-hardness and excellent wear resistance by pulse plating procedure. Our results showed that the duty cycle is a dominant parameter for the tungsten content in the coating and the tungsten content increases significantly with increasing duty cycle. The further analysis showed the great influence of tungsten content on micro-hardness of the coating. A maximum micro-hardness of about 859 Hv was obtained in pulse electrodeposited Ni-W/Al2O3 composite with tungsten content of 40 wt.% at a peak current density of 20 A/dm2, a duty cycle of 80%, a pulse frequency of 1000 Hz and a particle loading of 10 g/L alumina in the plating bath. Although the hardness of Ni-W/Al2O3 composite coating was only slightly affected by the alumina content of the deposits prepared in present investigation, the alumina content effect on the tribological characteristic of Ni-W/Al2O3 composite coatings is significant. The friction coefficient was lowered to 0.25 and the wear loss was reduced to 1.05 mg by setting the control factors according to the values mentioned above for obtaining the coating with the highest micro-hardness.  相似文献   

2.
EPR spectra of Gd3+-doped Ce2(SO4)3.8H2O and La2(SO4)3.9H2O single crystals have been measured with an X-band spectrometer at room and low temperatures. The absolute signs of spin Hamiltonian parameters have been determined for the La2(SO4)3.9H2O host from intensities of lines at liquid helium temperature; for the Ce2(SO4).8H2O host the lines broaden considerably below 60 K, not permitting the determination of absolute signs of spin Hamiltonian parameters. The data are analysed using a rigourous least-squares procedure, fitting simultaneously all lines obtained for several orientations of the external magnetic field. The zero-field splittings have been computed for both the hosts. The characteristics of EPR spectra of Gd3+ in these hosts are compared with those obtained in other rare-earth trisulphate octahydrate hosts.  相似文献   

3.
Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La2(Zr0.7Ce0.3)2O7 (LZ7C3) and La2Ce2O7 (LC) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, interdiffusion, surface and cross-sectional morphologies, cyclic oxidation behavior of DCL coating were studied. Energy dispersive spectroscopy and X-ray diffraction analyses indicate that both LZ7C3 and LC coatings are effectively fabricated by a single LZ7C3 ingot with properly controlling the deposition energy. The chemical compatibility of LC coating and thermally grown oxide (TGO) layer is unstable. LaAlO3 is formed due to the chemical reaction between LC and Al2O3 which is the main composition of TGO layer. Additionally, the thermal cycling behavior of DCL coating is influenced by the interdiffusion of Zr and Ce between LZ7C3 and LC coatings. The failure of DCL coating is a result of the sintering of LZ7C3 coating surface, the chemical incompatibility of LC coating and TGO layer and the abnormal oxidation of bond coat. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.  相似文献   

4.
Al-Al2O3 composite coatings with different Al2O3 particle shapes were prepared on Si and Al substrate by cold spray. The powder compositions of metal (Al) and ceramic (Al2O3) having different sizes and agglomerations were varied into ratios of 10:1 wt% and 1:1 wt%. Al2O3 particles were successfully incorporated into the soft metal matrix of Al. It was found that crater formation between the coatings and substrate, which is typical characteristic signature of cold spray could be affected by initial starting Al2O3 particles. In addition, when the large hard particles of fused Al2O3 were employed, the deep and big craters were generated at the interface between coatings and hard substrates. In the case of pure soft metal coating such as Al on hard substrate, it is very hard to get proper adhesion due to lack of crater formation. Therefore, the composite coating would have certain advantages.  相似文献   

5.
In the present study, Fe-Al2O3-FeAl2O4 composite coatings were successfully deposited by reactive plasma sprayed Al/Fe2O3 agglomerated powder. Phase composition and microstructure of the coatings were determined by XRD and SEM. The results indicated that the composite coatings were principally composed of three different phases, i.e. FeAl2O4 phase as main framework, dispersed ball-like Fe-rich phase, and small splats of Al2O3 phase, and it was thought that the in situ synthesized metal phase was helpful to toughen the coating matrix. According to the results of the indentation and frictional wear tests, the composite coating exhibited excellent toughness and anti-friction properties in comparison with conventional Al2O3 monophase coating, though its microhardness value was a little lower than that of Al2O3 coating. The formation mechanism and the toughening mechanism of the composite coating were clarified in detail.  相似文献   

6.
In situ formation of Al2O3-SiO2-SnO2 composite ceramic coating on Al-20%Sn alloy was successfully fabricated in aqueous Na2SiO3 electrolyte by microarc oxidation technology. The compositions, structure, mechanical and tribological properties of the composite coating were detailed studied by scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction, hardness tester and ball-on-disc friction tester. It is found that the species originating from the Al-20%Sn alloy substrate and the electrolyte solution both participate in reaction and contribute to the composition of the coating, which results in the generated coating firmly adherent to the substrate. The composite ceramic coating can greatly improve the microhardness and tribological property of Al-20%Sn alloy.  相似文献   

7.
The crystallization mechanism and conductivity of lithium aluminum germanium phosphate [LAGP] glass-ceramics fabricated from Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass system were investigated as a function of Al2O3 additions. A non-isothermal analysis was performed to study the crystallization behavior of LAGP glass-ceramics at various heating rates (5-25K min−1) by the Kissinger equation and the Augis-Bennett equation, illustrating volume crystallization for the glass-ceramics. The crystal identification and microstructure in glass-ceramics containing various Al2O3 contents were analyzed by means of XRD and FESEM. The main phase of the glass-ceramics was found to be LiGe2(PO4)3, with AlPO4 as the impurity phase. Additionally the highest total ionic conductivity (5.8×10−4 S/cm) at room temperature was obtained when x=0.5 for Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass-ceramics, suggesting that it was a promising electrolyte for practical application in all-solid-state lithium batteries.  相似文献   

8.
A composite ceramic coating containing Al2O3–ZrO2–Y2O3 was successfully prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) technique in an alkaline aluminate electrolyte. The morphology, elemental and phase composition, corrosion behavior and thermal stability of the uncoated and coated samples were studied by environmental scanning electron microscopy (ESEM), energy dispersive X-ray spectrometer (EDS), X-ray diffractometer (XRD), electrochemical corrosion test, high temperature oxidation test and thermal shock test. The results showed that the composite ceramic coating was composed of Al2O3, c-ZrO2, t-ZrO2, Y2O3 and some magnesium compounds, such as MgO, MgF2 and MgAl2O4. After PEO treatment, the corrosion potential of AZ91D alloy was increased and the corrosion current density was significantly reduced. Besides, the coated magnesium alloys also showed excellent high temperature oxidation resistance and thermal shock resistance at 500 °C environment.  相似文献   

9.
To increase the SiC content in Cr-based coatings, Cr-Al2O3/SiC composite coatings were plated in Cr(VI) baths which contained Al2O3-coated SiC powders. The Al2O3-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al2O3/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al2O3/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.  相似文献   

10.
In this study we present the effects of iron oxide (Fe2O3) on titanium dioxide (TiO2) in synthesising visible-light reactive photocatalysts. A Fe2O3-TiO2 composite photocatalyst was synthesized from Fe2(SO4)3 and Ti(SO4)2 by a ethanol-assisted hydrothermal method. The preparation conditions were optimized through the investigation of the effects of hydrothermal temperature and time as well as molar ratio of Ti to Fe on the photocatalytic activity. The visual, physical and chemical properties of the Fe2O3-TiO2 composites were investigated. The results showed that α-Fe2O3 and anatase TiO2 were present in the composites. The Fe2O3-TiO2 synthesized under optimum condition consisted of mesoporous structure with an average pore size of 4 nm and a surface area of 43 m2/g. Under visible and solar light irradiation, the photocatalytic activity of optimized sample was significantly higher than that of pure TiO2. This sample led to a photodegradation efficiency of 90% and 40% of auramine under visible light and solar light, respectively.  相似文献   

11.
Ni-Co/nano-Al2O3 (Ni-Co/Al2O3) composite coatings were prepared under pulse reversal current (PRC) and direct current (dc) methods respectively. The microstructure of coatings was characterized by means of XRD, SEM and TEM. Both the Ni-Co alloy and composite coatings exhibit single phase of Ni matrix with face-centered cubic (fcc) crystal structure, and the crystal orientation of the Ni-Co/Al2O3 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with alloy coatings. The hardness, anti-wear property and macro-residual stress were also investigated. The results showed that the microstructure and performance of the coatings were greatly affected by Al2O3 content and the electrodeposition methods. With the increasing of Al2O3 content, the hardness and wear resistance of the composite coatings enhanced. The PRC composite coatings exhibited compact surface, high hardness, better wear resistance and lower macro-residual stress compared with that of the dc composite coatings.  相似文献   

12.
Orange-emissive Ce3+/Eu2+ co-doped Sr3Al2O5Cl2 phosphors were synthesized by a solid-state reaction. The large overlap between the emission spectrum of blue Sr3Al2O5Cl2:Ce3+ and the excitation spectrum of orange Sr3Al2O5Cl2:Eu2+, and the shortening trend in lifetime of Ce3+ donors with increasing Eu2+ concentration in Sr3Al2O5Cl2:Ce3+, Eu2+ provide the strong evidence of energy transfer from Ce3+ to Eu2+ ions. It supports that the orange emission intensity of the optimal co-doped phosphor is 1.5 times stronger than that of single Eu2+-doped one. The Sr3Al2O5Cl2:Ce3+, Eu2+ phosphor is a promising orange-emitting phosphor for warm-white-light-emitting diode because of its effective excitation in the near ultraviolet range.  相似文献   

13.
利用SHS等离子喷涂技术,将经过机械团聚法制备的Fe2O3-Al复合粉体送入等离子焰流,沉积出厚度约为400 μm的复合涂层.利用XRD,SEM 和TEM等检测手段对涂层的成分和组织进行了分析,测定了涂层的显微硬度、断裂韧性以及耐磨性.结果表明涂层为具有纳米结构的FeAl2O4-Al2O3-Fe纳米复合组织;涂层的显微硬度为HV100g870;断裂韧性是普通Al2O3涂层的2倍;无润滑磨损的耐磨性是普通Al2O3涂层的2.5倍. 关键词: SHS等离子喷涂 纳米涂层 断裂韧性  相似文献   

14.
A solid polymer electrolyte (SPE) is synthesized by solution casting technique. The SPE uses poly(ethylene oxide) PEO as a host matrix doped with lithium triflate (LiCF3SO3), ethylene carbonate (EC) as plasticizer and nano alumina (Al2O3) as filler. The polymer electrolytes are characterized by Impedance Spectroscopy (IS) to determine the composition of the additive which gives the highest conductivity for each system. At room temperature, the highest conductivity is obtained for the composition PEO-LiCF3SO3-EC-15%Al2O3 with a value of 5.07 10− 4 S/cm. The ionic conductivity of the polymer electrolytes increases with temperature and obeys the Arrhenius law. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies indicate that the conductivity increase is due to an increase in amorphous content which enhances the segmental flexibility of polymeric chains and the disordered structure of the electrolyte. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components. Scanning electron microscopy (SEM) images show the changes morphology of solid polymer electrolyte.  相似文献   

15.
In this study, Al2O3/ZrO2 composite coatings were prepared on Zr substrates by micro-arc oxidation (MAO) in the NaAlO2-containing electrolytes, and the effect of NaAlO2 concentration on the microstructure, bond strength, microhardness and corrosion resistance of coatings was systematically investigated. The study reveals that the adequate NaAlO2 in the electrolyte (>0.2 M) is essential to the formation of needle-like α-Al2O3 in the coatings, and the amount of α-Al2O3 rises with the increase of the NaAlO2 concentration. m-ZrO2 and t-ZrO2 are present in all of the coatings, but their relative amount largely depends on the amount of Al2O3. It is also found that as the NaAlO2 concentration increases from 0.2 to 0.3 M, the coating becomes denser and thicker, and its bond strength, maximum microhardness and corrosion resistance increases as well. The coating formed at 0.3 M NaAlO2 demonstrates the highest bond strength of 52 MPa, the maximum microhardness of 1600 Hv0.2N and the superior corrosion resistance. However, the overhigh concentration of NaAlO2 (0.35 M) is found harmful to the coating's microstructure and properties.  相似文献   

16.
The uniform and dense Al2O3 and Al2O3/Al coatings were deposited on an orthorhombic Ti2AlNb alloy by filtered arc ion plating. The interfacial reactions of the Al2O3/Ti2AlNb and Al2O3/Al/Ti2AlNb specimens after vacuum annealing at 750 °C were studied. In the Al2O3/Ti2AlNb specimens, the Al2O3 coating decomposed significantly due to reaction between the Al2O3 coating and the O-Ti2AlNb substrate. In the Al2O3/Al/Ti2AlNb specimens, a γ-TiAl layer and an Nb-rich zone came into being by interdiffusion between the Al layer and the O-Ti2AlNb substrate. The γ-TiAl layer is chemically compatible with Al2O3, with no decomposition of Al2O3 being detected. No internal oxidation or oxygen and nitrogen dissolution zone was observed in the O-Ti2AlNb alloy. The Al2O3/Al/Ti2AlNb specimens exhibited excellent oxidation resistance at 750 °C.  相似文献   

17.
Nanocrystalline Y3Al5O12: Ce3+/Tb3+ (average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores (average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1–3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/Tb3+ particles show strong yellow-green and green emission corresponding to the 5d–4f emission of Ce3+ and 5D47F J (J = 6, 5, 4, 3) emission of Tb3+, respectively. These phosphors may have potential application in field emission displays.  相似文献   

18.
The electron paramagnetic resonance (EPR) of Nd2(SO4)3 · 8H2O and Sm2(SO4)3 · 8H2O doped with Gd3+ has been carried out at 273 K and the spin-Hamiltonian parameters are deduced. The zero field splittings have been computed and compared with those observed directly by Bogle and Symmons. It is found that the discrepancy in the zero field splittings. between computed and directly observed values falls within the range of linewidths of directly observed values.  相似文献   

19.
Binary Al2O3/SiO2-coated rutile TiO2 composites were prepared by a liquid-phase deposition method starting from Na2SiO3·9H2O and NaAlO2. The chemical structure and morphology of binary Al2O3/SiO2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al2O3/SiO2 coating layers both in amorphous phase were formed at TiO2 surfaces. The silica coating layers were anchored at TiO2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO2-coated TiO2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al2O3/SiO2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al2O3/SiO2-coated TiO2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al2O3/SiO2-coated TiO2 composites were higher than those of the naked rutile TiO2 and the SiO2-coated TiO2 samples. The relative light scattering index was found to depend on the composition of coating layers.  相似文献   

20.
王常珍  叶树青  张鑫 《物理学报》1985,34(8):1017-1026
在1182—1386K温度范围内,用固体电解质氧浓差电池:Mo|Cr,Y2O3,Y2O3·Cr2O3|ZrO2(+MgO)|Cr,Cr2O3|Mo测定了复合氧化物Y2O3·Cr2O3的热力学性质。对于反应Y2关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号