首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A new formulation of quantum mechanics (probability representation) is discussed. In this representation, a quantum state is described by a standard positive definite probability distribution (tomogram) rather than by a wave function. An unambiguous relation (analog of Radon transformation) between the density operator and a tomogram is constructed both for continuous coordinates and for spin variables. A novel feature of a state, tomographic entropy, is considered, and its connection with von Neumann entropy is discussed. A one-to-one map of quantum observables (Hermitian operators) on positive probability distributions is found.  相似文献   

3.
The probability-representation entropy (tomographic entropy) of an arbitrary quantum state is introduced. Using the properties of the spin tomogram as the standard probability-distribution function, the tomographic entropy notion is discussed. The relation of tomographic entropy to Shannon entropy and von Neumann entropy is elucidated.  相似文献   

4.
We obtain the linear time-dependent constants of motion of the parametric amplifier and use them to determine the evolution of a general two-mode Gaussian state in the tomographic-probability representation. By means of the discretization of the continuous variable density matrix, we calculate the von Neumann and linear entropies to measure the entanglement properties between the modes of the amplifier. We compare the obtained results for the nonlocal correlations with those associated to a linear map of discretized symplectic Gaussian-state tomogram onto a qubit tomogram. We use this qubit portrait procedure to establish Bell-type inequalities, which provide a necessary condition to determine the separability of quantum states, which can be evaluated through homodyne detection. We define the other no-signaling nonlocal correlations through the portrait procedure for noncomposite systems.  相似文献   

5.
The adiabatic theorem describes the time evolution of the pure state and gives an adiabatic approximate solution to the Schr ¨odinger equation by choosing a single eigenstate of the Hamiltonian as the initial state. In quantum systems, states are divided into pure states(unite vectors) and mixed states(density matrices, i.e., positive operators with trace one). Accordingly, mixed states have their own corresponding time evolution, which is described by the von Neumann equation. In this paper, we discuss the quantitative conditions for the time evolution of mixed states in terms of the von Neumann equation. First, we introduce the definitions for uniformly slowly evolving and δ-uniformly slowly evolving with respect to mixed states, then we present a necessary and sufficient condition for the Hamiltonian of the system to be uniformly slowly evolving and we obtain some upper bounds for the adiabatic approximate error. Lastly, we illustrate our results in an example.  相似文献   

6.
The evolution of states of the composition of classical and quantum systems in the groupoid formalism for physical theories introduced recently is discussed. It is shown that the notion of a classical system, in the sense of Birkhoff and von Neumann, is equivalent, in the case of systems with a countable number of outputs, to a totally disconnected groupoid with Abelian von Neumann algebra. The impossibility of evolving a separable state of a composite system made up of a classical and a quantum one into an entangled state by means of a unitary evolution is proven in accordance with Raggio’s theorem, which is extended to include a new family of separable states corresponding to the composition of a system with a totally disconnected space of outcomes and a quantum one.  相似文献   

7.
Shannon entropy and information are applied to study the properties of quantum states of a system in the probability representation of quantum mechanics. Examples of spin states and mixed Gaussian states of the two-mode system are considered. The relationship between the new entropy and the von Neumann entropy is reviewed. Two tomographic maps are considered within the framework of the star-product quantization. The explicit expression of tomographic entropy associated with photon-number tomogram of the two-mode state of photons is obtained in terms of Hermite polynomials of four variables. Based on a contribution to the International Conference “New Trends in Quantum Mechanics. Fundamental Aspects and Applications” (Palermo, Italy, November 2005).  相似文献   

8.
9.
Using the Radon integral transform of the relativistic kinetic equation for a spin-zero particle, we obtain the classical and quantum evolution equations for the tomographic probability density (tomogram) describing the states of the particle in both the classical and quantum pictures. The Green functions (propagators) of the evolution equations of a free particle are constructed. The examples of the evolution of Gaussian tomogram is considered.  相似文献   

10.
The tomography of a single quantum particle (i.e., a quantum wave packet) in an accelerated frame is studied. We write the Schrödinger equation in a moving reference frame in which acceleration is uniform in space and an arbitrary function of time. Then, we reduce such a problem to the study of spatiotemporal evolution of the wave packet in an inertial frame in the presence of a homogeneous force field but with an arbitrary time dependence. We demonstrate the existence of a Gaussian wave packet solution, for which the position and momentum uncertainties are unaffected by the uniform force field. This implies that, similar to in the case of a force-free motion, the uncertainty product is unaffected by acceleration. In addition, according to the Ehrenfest theorem, the wave packet centroid moves according to classic Newton’s law of a particle experiencing the effects of uniform acceleration. Furthermore, as in free motion, the wave packet exhibits a diffraction spread in the configuration space but not in momentum space. Then, using Radon transform, we determine the quantum tomogram of the Gaussian state evolution in the accelerated frame. Finally, we characterize the wave packet evolution in the accelerated frame in terms of optical and simplectic tomogram evolution in the related tomographic space.  相似文献   

11.
The quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics.In this work, by solving the quantum Langevin equation, we study the von Neumann entropy of a particle undergoing quantum Brownian motion. We obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function. The result is applied to the thermodynamic equilibrium initial state, which reproduces its classical counterpart in the high temperature limit. Based on these results, for those initial states having well-defined classical counterparts, we obtain the explicit expression of the quantum corrections to the entropy in the weak coupling limit. Moreover, we find that for the thermodynamic equilibrium initial state, all terms odd in h are exactly zero. Our results bring important insights to the understanding of entropy in open quantum systems.  相似文献   

12.
A new method is proposed for ab initio calculations of nonstationary quantum processes on the basis of a probability representation of quantum mechanics with the help of a positive definite function (quantum tomogram). The essence of the method is that an ensemble of trajectories associated with the characteristics of the evolution equation for the quantum tomogram is considered in the space where the quantum tomogram is defined. The method is applied for detailed analysis of transient tunneling of a wave packet. The results are in good agreement with the exact numerical solution to the Schrödinger equation for this system. The probability density distributions are obtained in the coordinate and momentum spaces at consecutive instances. For transient tunneling of a wave packet, the probability of penetration behind the barrier and the time of tunneling are calculated as functions of the initial energy.  相似文献   

13.
The von Neumann entropy cannot represent the thermodynamic entropy of equilibrium pure states in isolated quantum systems. The diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, is a natural generalization of the von Neumann entropy and applicable to equilibrium pure states. We show that the diagonal entropy is consistent with the second law of thermodynamics upon arbitrary external unitary operations. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that quantum trajectories under unitary evolution are restricted by the Hamiltonian dynamics and that the external operation is performed without reference to the microscopic state of the system.  相似文献   

14.
The Green's function and linear integrals of motion for a charged particle moving in an electric field are discussed. The Wigner functions and tomograms of the stationary states of the charged particle are obtained. The relationship between the quantum propagators for the Schrödinger evolution equation, the Moyal evolution equation, and the evolution equation in the tomographic-probability representation for a charged particle moving in an electric field is discussed.  相似文献   

15.
The dynamic equation for the optical tomogram of nonrelativistic quantum system with an arbitrary Hamiltonian is obtained. The kinetic equation in the classical relativistic kinetics is discussed, and its optical tomography representation is obtained. Dynamic equations for the Wigner functions of relativistic spinless quantum particles in electromagnetic and scalar fields are obtained. Optical tomographic-distribution functions of weakly relativistic spinless quantum particles are introduced, and dynamic equations for these functions in weak electric and scalar fields are obtained.  相似文献   

16.
The mixing-enhancing (in the sense of Uhlmann) dynamical maps and dynamical evolution is studied. We give a necessary and sufficient condition for a dynamical map (and dynamical evolution) of a quantum system to be mixing-enhancing. In the case of a finite- dimensional Hilbert space this condition is equivalent to the condition that the dynamical map (dynamical evolution) preserve the most mixed state and the von Neumann entropy be non- decreasing. It is proved that, in contrast with the finite-dimensional case, increasing of the von Neumann entropy under a dynamical map (for any initial state) does not imply that the dynamical map is mixing-enhancing. We also give a necessary and sufficient condition for an infinitesimal generator of a norm-continuous dynamical semigroup to be mixing-enhancing.  相似文献   

17.
In the development of quantum mechanics, the evolution of a quantum system was a controversial item. The duality of unitary evolution and state reduction as proposed by John von Neumann was widely felt unsatisfactory. Among the various attempts to reconcile the two incompatible modes of dynamics, the model of decoherence has turned out rather convincing.  相似文献   

18.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

19.
The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals’ in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present article, with potent applications in the field of quantum information processing, provide a deeper understanding of the electronic von Neumann entropy and hybrid entanglement that occurs in two-dimensional nanodots.  相似文献   

20.
分析了量子力学中的空间关联与通讯的关系与差别,提出了统计可分隔性概念, 由此证明了超光速量子通讯不可能.We analyse the relation and the difference between the quantum correlation of two points in space and the communication between them. The statistical separability of two points in the space is defined and proven. From this statistical separability, we prove that the superluminal quantum communication betwcen different points is impossible. To emphasis the compatibility between the quantum theory and the relativity, we write the von Neumann equation of density operator evolution in the multi time form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号