首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
The von Neumann evolution equation for the density matrix and the Moyal equation for the Wigner function are mapped onto the evolution equation for the optical tomogram of the quantum state. The connection with the known evolution equation for the symplectic tomogram of the quantum state is clarified. The stationary states corresponding to quantum energy levels are associated with the probability representation of the von Neumann and Moyal equations written for optical tomograms. The classical Liouville equation for optical tomogram is obtained. An example of the parametric oscillator is considered in detail.  相似文献   

2.
The dynamic equation for the optical tomogram of nonrelativistic quantum system with an arbitrary Hamiltonian is obtained. The kinetic equation in the classical relativistic kinetics is discussed, and its optical tomography representation is obtained. Dynamic equations for the Wigner functions of relativistic spinless quantum particles in electromagnetic and scalar fields are obtained. Optical tomographic-distribution functions of weakly relativistic spinless quantum particles are introduced, and dynamic equations for these functions in weak electric and scalar fields are obtained.  相似文献   

3.
The tomography of a single quantum particle (i.e., a quantum wave packet) in an accelerated frame is studied. We write the Schrödinger equation in a moving reference frame in which acceleration is uniform in space and an arbitrary function of time. Then, we reduce such a problem to the study of spatiotemporal evolution of the wave packet in an inertial frame in the presence of a homogeneous force field but with an arbitrary time dependence. We demonstrate the existence of a Gaussian wave packet solution, for which the position and momentum uncertainties are unaffected by the uniform force field. This implies that, similar to in the case of a force-free motion, the uncertainty product is unaffected by acceleration. In addition, according to the Ehrenfest theorem, the wave packet centroid moves according to classic Newton’s law of a particle experiencing the effects of uniform acceleration. Furthermore, as in free motion, the wave packet exhibits a diffraction spread in the configuration space but not in momentum space. Then, using Radon transform, we determine the quantum tomogram of the Gaussian state evolution in the accelerated frame. Finally, we characterize the wave packet evolution in the accelerated frame in terms of optical and simplectic tomogram evolution in the related tomographic space.  相似文献   

4.
It is demonstrated how the equilibrium semiclassical approach of Coffey et al. can be improved to describe more correctly the evolution. As a result a new semiclassical Klein-Kramers equation for the Wigner function is derived, which remains quantum for a free quantum Brownian particle as well. It is transformed to a semiclassical Smoluchowski equation, which leads to our semiclassical generalization of the classical Einstein law of Brownian motion derived before. A possibility is discussed how to extend these semiclassical equations to nonlinear quantum Fokker-Planck equations based on the Fisher information.  相似文献   

5.
A system of equations describing the evolution of the mean-square quantum fluctuations of the transverse coordinate and momentum operators and the evolution of the mean-square fluctuations of the transverse coordinate and momentum with respect to the classical trajectory of channeled particle is constructed using linearized Heisenberg equations. The energy losses of channeled particles on crystal electrons and the mean-square fluctuations of the transverse coordinate and momentum are calculated within the same formalism.  相似文献   

6.
G. Costanza 《Physica A》2011,390(10):1713-1722
The deterministic evolution equations of classical as well as quantum mechanical models are derived from a set of stochastic evolution equations after taking an average over realizations using a theorem. Examples are given that show that deterministic quantum mechanical evolution equations, obtained initially by R.P. Feynman and subsequently studied by Boghosian and Taylor IV [B.M. Boghosian, W. Taylor IV, Phys. Rev. E 57 (1998) 54. See also arXiv:quant-ph/9904035] and Meyer [D.A. Meyer, Phys. Rev. E 55 (1997) 5261], among others, are derived from a set of stochastic evolution equations. In addition, a deterministic classical evolution equation for the diffusion of monomers, similar to the second Fick law, is also obtained.  相似文献   

7.
Considering that the classical evolution equations are similar to the Schrodinger eqaution,we point out that there is the structure of the Berry's Phase in the solution of a classical evolution eqaution with adiabatic changing parameters.Thus,we can use a classical evolution process to imitate the quantum adiabatic process.As an example,the motion of a charged particle in slowly-changing magnetic field is studied and the corresponding phase factor can be interpreted as a holomony of the fiber bundle on the sphare s2 in the parameter space.  相似文献   

8.
A new method is proposed for ab initio calculations of nonstationary quantum processes on the basis of a probability representation of quantum mechanics with the help of a positive definite function (quantum tomogram). The essence of the method is that an ensemble of trajectories associated with the characteristics of the evolution equation for the quantum tomogram is considered in the space where the quantum tomogram is defined. The method is applied for detailed analysis of transient tunneling of a wave packet. The results are in good agreement with the exact numerical solution to the Schrödinger equation for this system. The probability density distributions are obtained in the coordinate and momentum spaces at consecutive instances. For transient tunneling of a wave packet, the probability of penetration behind the barrier and the time of tunneling are calculated as functions of the initial energy.  相似文献   

9.
Quantum particles and classical particles are described in a common setting of classical statistical physics. The property of a particle being “classical” or “quantum” ceases to be a basic conceptual difference. The dynamics differs, however, between quantum and classical particles. We describe position, motion and correlations of a quantum particle in terms of observables in a classical statistical ensemble. On the other side, we also construct explicitly the quantum formalism with wave function and Hamiltonian for classical particles. For a suitable time evolution of the classical probabilities and a suitable choice of observables all features of a quantum particle in a potential can be derived from classical statistics, including interference and tunneling. Besides conceptual advances, the treatment of classical and quantum particles in a common formalism could lead to interesting cross‐fertilization between classical statistics and quantum physics.  相似文献   

10.
谢传梅  范洪义 《中国物理 B》2011,20(6):60303-060303
According to Fan-Hu's formalism (Fan Hong-Yi and Hu Li-Yun 2009 Opt. Commun. bf282 3734) that the tomogram of quantum states can be considered as the module-square of the state wave function in the intermediate coordinate-momentum representation which is just the eigenvector of the Fresnel quadrature phase, we derive a new theorem for calculating quantum tomogram of density operator, i.e., the tomogram of a density operator ρ is equal to the marginal integration of the classical Weyl correspondence function of F+ρF, where F is the Fresnel operator. Applications of this theorem to evaluating the tomogram of optical chaotic field and squeezed chaotic optical field are presented.  相似文献   

11.
F. Reuse 《Foundations of Physics》1979,9(11-12):865-882
A canonical formalism for the relativistic classical mechanics of many particles is proposed. The evolution equations for a charged particle in an electromagnetic field are obtained and the relativistic two-body problem with an invariant interaction is treated. Along the same line a quantum formalism for the spinless relativistic particle is obtained by means of imprimitivity systems according to Mackey theory. A quantum formalism for the spin-1/2 particle is constructed and a new definition of spin1/2 in relativity is proposed. An evolution equation for the spin-1/2 particle in an external electromagnetic field is given. The Bargmann Michel, and Telegdi equation follows from this formalism as a quasiclassical approximation. Finally, a new relativistic model for hydrogenlike atoms is proposed. The spectrum predicted is in agreement with Dirac's when radiative corrections have been added.  相似文献   

12.
根据Heisenberg对应原理(HCP),在经典极限下厄密算符的量子矩阵元对应经典物理量的Fourier展开系数.将HCP应用到相对论领域的Dirac方程中,对于自由粒子和在匀磁场中的带电粒子,其量子算符的矩阵元在经典极限下对应着相对论物理方程的解.计算表明,在经典极限下量子期望值就是对应经典物理量的时间平均值.  相似文献   

13.
Thermal leptogenesis is an attractive mechanism that explains in a simple way the matter-antimatter asymmetry of the universe. It is usually studied via the Boltzmann equations, which describes the time evolution of particle densities or distribution functions in a thermal bath. The Boltzmann equations are classical equations and suffer from basic conceptual problems and they lack to include many quantum phenomena. We show how to address leptogenesis systematically in a purely quantum way, by describing non-equilibrium excitations of a Majorana particle in the Kadanoff-Baym equations with significant emphasis on the initial and boundary conditions of the solutions. We apply our results to thermal leptogenesis, computing analytically the asymmetry generated, comparing it with the semiclassical Boltzmann approach. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry. The insertion of standard model decay widths to the particles excitations of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes.  相似文献   

14.
The notion of the center-of-mass tomogram is introduced for describing the classical states of multipartite systems. The center-of-mass tomographic-probability representation of the quantum states is used to calculate the fidelity of multipartite quantum states in an explicit integral form.  相似文献   

15.
16.
We study the electromagnetic-field tomograms for classical and quantum states. We use the violation of the positivity of entropy for the photon-probability distributions for distinguishing the classical and quantum domains. We show that the photon-probability distribution expressed in terms of optical or symplectic tomograms of the photon quantum state must be a nonnegative function, which yields the nonnegative Shannon entropy. We also show that the optical tomogram of the photon classical state provides the expression for the Shannon entropy, which can be nonpositive.  相似文献   

17.
Quantum matrix elements of the coordinate, momentum and the velocity operator for a spin-1/2 particle moving in a scalar-like potential are calculated. In the large quantum number limit, these matrix elements give classical quantities for a relativistic system with a position-dependent mass. Meanwhile, the Klein-Gordon equation for the spin-0 particle is discussed too. Though the Heisenberg equations for both the spin-0 and spin-1/2 particles are unlike the classical equations of motion, they go to the classical equations in the classical limit.   相似文献   

18.
The possibility to formulate classical statistical mechanics in terms of the complex wave function and density matrix obeying the evolution equation is discussed. It is shown that the modulus squared of the introduced wave function of the classical particle has the same physical meaning as the modulus squared of the wave function of the quantum particle. The tomographic probabilities are studied for both classical and quantum states. Integrals of motion and their relation to the propagators are discussed.  相似文献   

19.
We study the problem of a quantum particle moving in the Dirac delta potential with instant changes in the well depth using the formalism of the tomographic-probability representation of quantum mechanics. We calculate the Husimi function for a particle moving in the Dirac delta potential and study the relation of the Husimi function to the state tomogram. We check numerically the tomographic entropic uncertainty relation for the bound state of the particle moving in the Dirac delta potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号