首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
以石墨烯-壳聚糖复合膜修饰玻碳电极,并在此复合膜上电沉积纳米铜,用于葡萄糖的无酶检测。以扫描电镜、傅立叶红外光谱及电化学交流阻抗谱对该复合膜微观形态进行表征,以循环伏安法、计时电流法对该电极的电化学行为进行研究。实验结果表明,在0.1 mol/L Na OH溶液中修饰电极对葡萄糖具有良好的催化氧化作用,该电极对葡萄糖的检测线性范围为5.6×10-5~1.2×10-3mol/L,检出限(S/N=3)为2.3×10-5mol/L。该修饰电极对样品的检测具有良好的稳定性、重现性。  相似文献   

2.
采用滴涂法和循环伏安法制备石墨烯-聚唑类化合物复合膜修饰玻碳电极,分别用循环伏安法和差分脉冲伏安法研究黄嘌呤和鸟嘌呤混合物在修饰电极上的电化学行为。在0.2 mol/L的磷酸盐缓冲液(p H 5.5)中,黄嘌呤和鸟嘌呤混合物在修饰的玻碳电极上具有较好的电化学行为。鸟嘌呤和黄嘌呤分别在4.0×10~(-4)~4.0×10~(-6)mol/L和4.0×10~(-5)~4.0×10~(-8)mol/L范围内有较好的电化学响应,鸟嘌呤和黄嘌呤检出限分别为4.0×10~(-7)mol/L和4.0×10~(-9)mol/L。方法用于同时测定人体尿液中鸟嘌呤和黄嘌呤,回收率分别为102.1%~105.9%和96.9%~106.5%。  相似文献   

3.
依次用滴涂法和电化学方法将石墨烯和组氨酸修饰在玻碳电极表面,制备了组氨酸/石墨烯修饰的玻碳电极,将该电极用于循环伏安法测定铜(Ⅱ)。由于石墨烯良好的导电性能以及组氨酸的配位吸附效应,铜(Ⅱ)在该修饰电极上的氧化峰电流相对于裸玻碳电极上的显著增大。在最佳条件下,铜(Ⅱ)的浓度在2.30×10-8~3.06×10-5 mol·L-1范围内与其氧化峰电流呈线性关系,测定下限(10S/N)为1.50×10-9 mol·L-1。此方法应用于实际样品中痕量铜(Ⅱ)的测定,加标回收率在94.0%~102%之间,测定值的相对标准偏差(n=10)为2.0%,本法测定值与原子吸收光谱法测定值相符。  相似文献   

4.
陈慧娟  朱建君  余萌 《分析化学》2013,41(8):1243-1248
采用滴涂法和电沉积法制备了石墨烯/纳米氧化锌复合膜修饰玻碳电极,再将葡萄糖氧化酶固定在修饰电极表面制成了电化学生物传感器,用于葡萄糖的灵敏测定。用循环伏安法在-0.7~-0.1 V范围内研究了葡萄糖氧化酶在修饰电极上的直接电化学行为。结果表明,石墨烯/纳米氧化锌复合膜能很好地保持葡萄糖氧化酶的生物活性,并显著促进了其电化学过程。在0.1 mol/L磷酸盐缓冲溶液(pH 7.0)中,固定在修饰电极上的葡萄糖氧化酶呈现出一对近乎可逆的氧化还原峰,并且对葡萄糖的氧化具有良好的催化作用。葡萄糖氧化酶在修饰电极上的电子转移常数ks为1.42 s-1,修饰电极对葡萄糖催化的米氏常数Kampp为14.2μmol/L。线性范围为2.5×10-6~1.5×10-3mol/L,检出限为2.4×10-7mol/L(S/N=3)。此修饰电极具有良好的导电性能、稳定性和重现性,可用于实际样品的分析测定。  相似文献   

5.
以水合肼为还原剂,采用均相还原法制备还原氧化石墨烯-多壁碳纳米管复合材料(rGO-MWCNTs),通过滴涂法将其修饰到玻碳电极(GCE)表面.以此复合材料为载体,采用电化学方法制备了金纳米粒子-还原氧化石墨烯-多壁碳纳米管复合膜修饰电极(AuNPs-rGO-MWCNTs/GCE).通过扫描电镜(SEM)、EDS能谱技术和电化学方法对此电极进行了表征.研究了双酚A在修饰电极上的电化学行为.结果表明,此电极对双酚A的电极过程具有良好的电化学活性,在0.10 mol/L PBS溶液(pH 7.0)中,微分脉冲伏安法测定双酚A的线性范围为5.0 × 10-9~1.0 × 10-7 mol/L和1.0 × 10-7~2.0 × 10-5 mol/L,检出限为1.0 ×10-9 mol/L(S/N=3). 将此电极用于模拟水样和超市购物小票样品中双酚A含量的测定,加标回收率分别为97%~110%和98%~104%.  相似文献   

6.
以滴涂法在玻碳电极表面修饰一层阳离子交换聚合物Nafion膜,通过离子交换将Ni2+固定于电极表面,进一步电化学沉积得到相互交联的Ni纳米片。Ni纳米片修饰电极能催化葡萄糖的电化学氧化,可用于无酶葡萄糖传感器的构建。在0.60 V恒电位条件下,Ni纳米片修饰电极的氧化峰电流随葡萄糖浓度的增大而增大,其线性响应浓度范围为0.02~3.85 mmol/L。传感器的检测灵敏度为150.6μA(mmol/L)-1·cm-2,检出限为5μmol/L,响应时间为5 s。传感器应用于葡萄糖注射液的检测,加标回收率为90.0%。  相似文献   

7.
基于石墨烯微片修饰玻碳电极对抗坏血酸的电催化作用,建立了测定抗坏血酸的电化学分析方法。石墨烯微片修饰玻碳电极与裸玻碳电极相比,显著提高了抗坏血酸的氧化峰电流,降低了氧化峰电位,提高了测定的灵敏度。该电极测定抗坏血酸的线性范围为5.0×10-5~2.5×10-2mol/L,最低检测限为6.5×10-7mol/L(信噪比=3)。  相似文献   

8.
将氧化石墨烯(GO)在玻碳电极(GCE)表面进行直接电化学还原,再组装上纳米金-壳聚糖(AuNPCS)聚阳离子,形成了电化学还原氧化石墨烯/纳米金-壳聚糖(ERGO/AuNP-CS)复合膜修饰的玻碳电极。采用扫描电子显微镜(SEM)表征了不同修饰膜表面的形貌,探讨了其对尿酸(UA)分子的差分脉冲伏安(DPV)行为,发现ERGO/AuNP-CS复合膜对UA分子表现出显著的电催化氧化活性。在0.10 mol/L磷酸盐缓冲溶液(pH=6.5)中,扫速为100 mV/s时,此复合膜修饰电极的DPV响应与UA的浓度在0.05~110μmol/L范围内呈性关系,检测限为12.4 nmol/L(S/N=3)。此修饰电极具有良好的选择性、重现性和稳定性,可应用于人体血清和尿液样品中UA的测定,回收率达到93.8%~104.1%。结果与分光光度法和尿酸酶试剂盒法相符。  相似文献   

9.
用一步电沉积法制备了纳米铜/石墨烯/壳聚糖复合膜修饰玻碳电极。用循环伏安法(CV)和差分脉冲伏安法(DPV)对邻苯二酚在该修饰电极的电化学行为进行了研究。实验结果表明,在pH值为7.0的磷酸盐缓冲液(PBS)中,该修饰电极对邻苯二酚具有良好的电催化作用,其电化学信号与邻苯二酚的浓度在1.0×10-6~2.0×10-4mol/L范围内呈良好的线性关系,线性相关系数为0.991。检出限为1×10-7mol/L。结果表明,纳米铜/石墨烯/壳聚糖复合膜修饰电极显著提高了邻苯二酚的电化学响应信号,并表现出良好的选择性和重现性。该方法成功用于水样中邻苯二酚含量的测定。  相似文献   

10.
基于石墨烯纳米材料和循环伏安法技术制备了聚对氨基苯磺酸/石墨烯修饰电极并研究了氧氟沙星(OFL)在该修饰电极上的电化学行为,建立了一种简单快速灵敏测定氧氟沙星的电化学分析方法。 结果表明,与玻碳电极相比,对氨基苯磺酸/石墨烯电化学修饰电极能显著提高氧氟沙星的峰电流。 在优化条件下,其检测线性范围为1~600 μmol/L,最低检测限为(S/N=3)0.33μmol/L。 该修饰电极具有较好的重现性和稳定性,用于实际样品氧氟沙星滴眼液的测定,效果良好。  相似文献   

11.
利用电沉积方法制备Cu-Ag/石墨烯修饰玻碳电极,研究了亚硝酸盐在该修饰电极上的电化学行为,建立了电化学测定亚硝酸盐的新方法。在磷酸盐缓冲溶液中,修饰电极对亚硝酸盐的电化学响应具有很好的催化作用。利用线性扫描伏安法对亚硝酸盐的电化学氧化进行定量分析,亚硝酸盐的氧化峰电流与其浓度在8×10~(-9)~8×10~(-7)mol/L和8×10~(-7)~2×10~(-6)mol/L范围内呈良好的线性关系,检出限低至8×10~(-9)mol/L。  相似文献   

12.
制备了石墨烯薄膜修饰玻碳电极,并通过循环伏安法研究了对硫磷(PT)在该修饰电极上的电化学行为。对支持电解质、溶液pH值等实验条件进行了优化。结果表明,在0.1mol/L的乙酸-乙酸钠缓冲溶液(pH=5.0)中,PT在石墨烯薄膜修饰电极上具有良好的电化学响应,对比裸玻碳电极,PT的氧化峰峰电流显著提高,表明修饰膜对PT的电化学氧化具有一定的催化作用。PT的氧化峰电流及其浓度分别在1.0×10-7~1.0×10-6 mol/L范围内和3.0×10-6~1.0×10-5 mol/L范围内呈良好的线性关系,线性相关系数分别是0.9956和0.9874,检出限为1.0×10-8 mol/L。将该修饰电极应用于小白菜中残留PT的测量,结果比较满意。  相似文献   

13.
采用晶种生长法制备了形状均一、导电性良好的三角形金纳米片(Au TNPs),并以氧化石墨烯(GO)为载体,聚阴离子Nafion为保护剂,将其修饰在玻碳电极(GCE)表面,制得氧化石墨烯/三角形金纳米片/Nafion复合膜修饰电极(GO/Au TNPs/Nafion/GCE).利用扫描电子显微镜和原子力显微镜对纳米复合材料的形貌进行表征,采用循环伏安法(CV)和示差脉冲伏安法(DPV)探讨了L-色氨酸(L-Trp)在不同修饰电极上的电化学行为.结果表明,GO/Au TNPs/Nafion/GCE对L-Trp表现出良好的电催化氧化特性.在0.10 mol/L的PBS缓冲溶液(p H=3.5)中,该修饰电极的响应峰电流与L-Trp的浓度存在良好的线性关系,线性范围为4.000×10~(-8)~6.000×10~(-5)mol/L,检出限为1.000×10~(-8)mol/L(S/N=3).该电极具有良好的重现性、稳定性和抗干扰能力.将该电极用于猪血清样品中L-Trp的测定,回收率为93.1%~105.9%,说明该电极在健康养殖生化检测领域有潜在的应用价值.  相似文献   

14.
用循环伏安法制备了聚对氨基苯磺酸/氧化石墨烯修饰玻碳电极(PABSA/GO/GCE),研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为,并建立了同时测定多巴胺和抗坏血酸电化学分析新方法,相对于裸玻碳电极,该电极测定DA和AA的峰电流明显增加。实验结果表明:在实验条件下,DA测定的线性范围为0.50~300μmol/L;检出限为5.0μmol/L。AA测定的线性范围是0.10~2.4 mmol/L,检出限为0.50μmol/L。  相似文献   

15.
研究甲氨蝶呤(MTX)在石墨烯修饰玻碳电极上的电化学行为,探讨MTX与溶菌酶(LYSO)的相互作用及其作用机理。结果发现,在pH 4.5的HAc-NaAc缓冲溶液中,石墨烯修饰电极对MTX的电化学氧化具有明显的催化作用,氧化峰电流相对于在裸玻碳电极上增加了5倍。线性范围为0.05~3.0μmol/L,检出限(S/N=3)为0.02μmol/L。对0.8μmol/L的MTX11次平行测定,RSD为3.5%。当LYSO加入MTX溶液后,其峰电流降低。紫外光谱有红移增色效应。MTX与LYSO结合比为1∶1,结合常数为4.9×105L/mol。方法可用于MTX片药物的检测及与蛋白相互作用的研究。  相似文献   

16.
聚亚甲基蓝和纳米金修饰玻碳电极的葡萄糖生物传感器   总被引:11,自引:4,他引:7  
用循环伏安法在玻碳电极上电聚合一层稳定的亚甲蓝聚合物膜,研究了这层膜在0.1mol/L磷酸缓冲溶液(pH7.0)中的电化学性质。用纳米金溶胶与聚乙烯醇缩丁醛(PVB)构成复合固酶基质,采用溶胶-凝胶法固定葡萄糖氧化酶(GOD)于亚甲蓝修饰的玻碳电极表面,制成了新型葡萄糖生物传感器。实验发现,加入纳米金后提高了酶电极对葡萄糖的电流响应,所制备的传感器具有响应快、灵敏度高、稳定性好,对葡萄糖的线性响应范围为1×10-6~3×10-3mol/L,检出限为5×10-7mol/L。并具有抗尿酸、抗坏血酸干扰的特点。  相似文献   

17.
先以氧化石墨烯(Graphen oxide,GO)为阴离子掺杂剂,采用电化学聚合法制备了聚吡咯-氧化石墨烯复合膜(PPy-GO)。分别在0.10 mol/L Na Cl和0.10 mol/L NaOH溶液中对其进行还原和过氧化处理,制得过氧化聚吡咯-还原氧化石墨烯复合膜(OPPy-ERGO)。再以此OPPy-ERGO复合膜为载体,采用电化学沉积法制备了氧化铜-过氧化聚吡咯-还原氧化石墨烯复合膜修饰电极(CuO-OPPy-ERGO/CCE)。通过扫描电镜和电化学方法对此电极进行表征,研究了葡萄糖在此修饰电极上的电化学行为。结果表明,此电极对葡萄糖的电氧化过程表现出高的催化活性和良好的抗干扰能力。在0.20 mol/L NaOH溶液中,安培法检测葡萄糖的线性范围为5.0×10~(-7)~1.0×10~(-3)mol/L,检出限(3Sb)为2.0×10~(-7)mol/L,灵敏度为121.8μA/(mmol·L~(-1))。该电极用于血清中葡萄糖含量的测定,加标回收率为96.0%~110.1%。  相似文献   

18.
通过改进的Hummers法和溶剂热法分别制备了石墨烯和硫化铜纳米花。采用滴涂法进一步依次将石墨烯和硫化铜纳米花修饰于玻碳电极,制备了硫化铜纳米花/石墨烯修饰玻碳电极(Nanoflower CuS/GR/GCE)。利用循环伏安法和差分脉冲伏安法等研究了长春地辛在该修饰电极的电化学行为。结果表明:长春地辛的浓度在1.0×10~(-8)~1.0×10~(-7) mol·L~(-1),1.0×10~(-7)~1.1×10~(-5) mol·L~(-1)及1.1×10~(-5)~1.0×10-4 mol·L~(-1)内与其对应的峰电流的减小量呈线性关系,检出限(3S/N)为4.9×10~(-9 )mol·L~(-1)。对1.0×10~(-6) mol·L~(-1)长春地辛标准溶液连续测定5次,测定值的相对标准偏差为1.2%。方法用于长春地辛药品样品的分析,加标回收率在97.1%~103%之间。  相似文献   

19.
将金纳米粒子(AuNPs)电沉积在N,P/石墨烯(N,P/Graphene)修饰的玻碳电极表面,研究了维生素B_6(VB_6)在该修饰电极上的电化学行为。实验结果表明:VB_6在该修饰电极上出现一个良好的氧化峰,在最佳实验条件下,其氧化峰电流与VB_6的浓度在2.0×10~(-5)~4.0×10~(-4) mol/L范围内呈线性关系,相关系数R=0.998,检出限为9.2×10~(-6) mol/L。一些常见的物质如K~+、Na~+、Zn~(2+)、葡萄糖(Glu)不干扰VB_6的检测。此方法已用于片剂中VB_6含量的检测,获得较好结果。  相似文献   

20.
赵丹  冯峰  粟有志  张菁楠  于莲  苏瑾  张峰 《色谱》2017,35(4):413-420
建立了同时测定螺旋藻多糖水解产物中鼠李糖、木糖、阿拉伯糖、果糖、甘露糖、葡萄糖、半乳糖、甘露醇、核糖、岩藻糖、葡萄糖醛酸、半乳糖醛酸12种糖类化合物的超高效液相色谱-串联质谱分析方法。螺旋藻样品经超声波辅助提取,用三氟乙酸水解,经Waters Acquity BEH Amide色谱柱(100 mm×2.1 mm,1.7μm)分离,以10mmol/L甲酸铵和10 mmol/L甲酸铵-乙腈为流动相,在电喷雾电离源负离子(ESI-)模式下,用多反应监测(MRM)模式检测。结果表明,12种糖类化合物的定量限为0.005~0.15 mg/kg,线性范围为0.05~5 mg/L。按照样品中每种糖本底含量的50%、100%、150%进行添加,回收率为80.21%~121.6%。应用该方法对螺旋藻样品进行分析,结果发现:大部分样品都能检测到岩藻糖、半乳糖、阿拉伯糖、鼠李糖、葡萄糖、果糖、木糖、核糖,含量在0.3~889.4 mg/g之间。此外,测定的15个样品中岩藻糖、半乳糖、阿拉伯糖、鼠李糖、葡萄糖、果糖、木糖、核糖是共有组分,含量差异较大,但在所有样品中均未检测到甘露醇和甘露糖。该方法的建立可为阐明螺旋藻多糖的结构组成及其活性提供技术支撑及基础数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号