首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米孔单分子检测技术是一种集操作简单、灵敏度高、检测速度快、无需标记等优点的传感检测技术,广泛应用于蛋白质检测、基因测序和标志物检测等领域。基因测序的费用、灵敏度和精度是该检测技术的发展中亟待解决的主要问题,而开发新型的纳米孔材料则是解决这些问题的关键手段。本文从纳米孔材料的选择和设计角度出发,综述了三种不同的纳米孔,即蛋白质等生物纳米孔、固态纳米孔和新型二维材料纳米孔在生物分子检测方面的应用现状,并比较了生物纳米孔与固态纳米孔的差别。本文也重点阐述了二维材料纳米孔在生物分子检测中的实验和模拟研究进展。最后,对纳米孔检测技术的发展前景进行了展望。  相似文献   

2.
以锥形石英固体纳米孔为模板, 通过化学法制备具有金纳米结构的纳米孔尖端, 从而实现一步法简单、 快速地制备直径为30 nm的闭合式无线纳米孔电极(CWNE); 探讨了制备过程中反应物浓度对制备过程的影响, 制备成功率高达85.7%, RMS噪音低至4.2 pA. 以金纳米颗粒碰撞电极实验为电化学测量模型, 获得了单个颗粒与纳米孔电极相互作用的信号, 验证了闭合式无线纳米孔电极对微秒级电信号的皮安级电流分辨能力, 为进一步探索纳米界面上的电子传递过程提供了稳定的测量界面.  相似文献   

3.
本文报道了一种简单快速构建NH4Cl-TiO2核壳结构、氧化钛空心纳米球和介孔氧化钛纳米粒子的方法.通过非水体系中TiO2·xH2O0与NH4C1的混合物在NHaCl纳米晶聚集体上的沉积过程,构建了以NH4C1为核,TiO2-xH2O与NH4Cl混合物为壳的核壳复合结构.利用甲醇萃取方法去除核壳结构中的NH4C1可以得到由多孔氧化钛构成的空心纳米球,60nm左右大小,纳米球壁厚约为15nm,平均孔径为1.9nm;而利用500℃煅烧的方法除去NH4c1后的产物是具有内在介孔(2.2nm)的纳米粒子,粒子平均尺寸为14.7nm.这种纳米尺度的多级介孔结构有利于形成具有良好光催化活性的TiO2纳米材料.在以甲基橙为目标的光催化降解反应中,合成的介孔纳米粒子显示了良好的光催化效果,其活性比同样500℃煅烧的普通无孔纳米粒子的活性要高出61%.本方法可能在快速低成本制造复杂纳米结构和廉价高效光催化剂方面起到积极作用.  相似文献   

4.
生物大分子纳米孔分析技术研究进展   总被引:1,自引:0,他引:1  
脱氧核糖核酸穿越纳米孔动力学研究以及利用纳米孔开展新型DNA测序技术研究是后人类基因组计划的热点之一。本文对生物纳米孔、固态纳米孔以及纳米孔生物大分子识别技术的研究现状进行了归纳和总结,并对该领域的发展趋势进行展望。  相似文献   

5.
采用低分子量酚醛树脂/F127混合物填充多孔氧化铝模板孔道,制备了大尺寸介孔孔道、核-壳结构的介孔碳纳米纤维.分别以SEM、TEM及N2等温吸附-脱附观察分析样品形貌和孔结构参数.循环伏安与恒流充放电测定该介孔纳米纤维电极(阳极)的超电容性能.结果表明:介孔碳纳米纤维比电容明显增大,且在高扫速、大电流下具有良好的超电容特性.  相似文献   

6.
生物纳米孔传感技术因其快速、低成本、无需荧光标记等优点,在化学和生物等诸多研究领域得到广泛应用,已发展成为一种新颖的、独具特色的单分子分析手段。该技术目前主要应用于DNA测序研究,同时在单分子分析领域也取得了令人瞩目的成就。该文简要介绍了生物纳米孔分析技术的原理和生物孔的种类,主要总结了近20年来生物纳米孔在DNA测序和单分子分析中的研究进展并予以了展望。  相似文献   

7.
普鲁士蓝(PB)可以作为许多生物化学物质的人工酶来修饰惰性电极,用来催化它们的氧化还原.该文评述了近年来国内外对纳米尺度PB在电分析化学领域中的应用进展,含纳米PB的基本特性、制备方法、电极固定,以及在电分析化学中的应用.纳米PB对检测信号有放大作用,已经在电分析中体现了它的优越性,对纳米PB的深入研究将开发出性能更优良的传感器.  相似文献   

8.
纳米介孔氧化铁的制备*   总被引:2,自引:0,他引:2  
张玉  张卫民  孙中溪 《化学进展》2007,19(10):1503-1509
纳米氧化铁的许多优异性能使其成为广泛的研究热点。本文介绍了纳米氧化铁的制备及其颗粒大小、形貌控制等方面的进展状况。综述了各种不同形态介孔氧化铁及含铁介孔纳米复合材料的研究进展,结合课题组的研究工作,重点评述了介孔氧化铁的制备进展,并对该领域的研究方向和需要解决的问题提出了自己的观点。  相似文献   

9.
DNA和RNA上广泛存在着多种化学修饰.这些核酸修饰参与基因表达的调控,影响生长发育等生理过程,并可能会引发癌症等疾病.对核酸修饰的精准识别与定位有助于理解其功能机制,帮助相关疾病的诊断与治疗.纳米孔测序是一种新兴的单分子测序技术,可以根据修饰碱基与天然碱基之间阻孔信号的差异实现核酸序列中多种修饰的同时检测,是目前检测核酸修饰最直接的方法.本文简要介绍了纳米孔测序技术的发展和原理以及识别核酸修饰的算法工具,总结了纳米孔测序技术在核酸修饰检测中的应用,并对其发展前景进行了展望.  相似文献   

10.
纳米孔测序是有可能实现"$1,000 Genome"目标的技术之一.近年来,研究较多的纳米孔有蛋白质纳米孔和硅基材料的固态纳米孔.蛋白孔寿命比较短,而基于硅基底的固态纳米孔深度显著超过单链DNA相邻碱基的间距,所以,无法实现DNA的单个碱基的分辨.作者用聚焦离子束先制造氮化硅基底,并在该基底上铺设石墨烯,再用聚焦电子束刻蚀石墨烯,获得直径10 nm以下的纳米孔,初步分析了DNA穿越纳米孔时产生的电信号及穿孔噪音,向单层石墨烯纳米孔测序DNA迈出了一步.  相似文献   

11.
Cu-Ni合金在NaCl溶液中的孔蚀特性   总被引:2,自引:0,他引:2  
李杰  牛焱  宋诗哲 《电化学》2003,9(4):422-427
采用慢速电位扫描法和电位台阶计时电流法分别研究铸态铜镍合金以及由机械合金化方法制备的纳米晶铜镍合金于不同浓度NaCl溶液中的孔蚀特性.讨论含Ni量,Cl-浓度等因素对合金孔蚀敏感性的影响,探讨了不同结构合金的孔蚀发展.  相似文献   

12.
以介孔分子筛为金属催化剂载体制备纳米碳管   总被引:2,自引:0,他引:2  
 以不同的介孔分子筛作为金属催化剂载体,对催化合成纳米碳管进行了系统的研究,讨论了反应条件对纳米碳管纯度和产量的影响. 结果表明,不同的介孔分子筛对金属活性中心的形成、碳组分的扩散、纳米碳管的管径及形态均有明显的影响. 此外,金属的种类、状态和含量也影响纳米碳管的合成. 探索了合成高产量纳米碳管的条件,并对介孔分子筛上生长纳米碳管的特点进行了讨论.  相似文献   

13.
随着核酸自组装领域的飞速发展,除了作为遗传信息的载体外,核酸成为了一种具有高操作自由度和无限可能性的功能材料.基于核酸自组装原理的DNA纳米技术凭借其强大的可编辑性已经广泛应用于生物传感、纳米材料工程、医学诊疗以及分子计算机等领域.纳米孔作为一种新兴的单分子分析技术具有高分辨、高通量、免标记等特点,近年来在基因测序、分子物理化学性质分析等领域展示出了极大的应用潜力.作为一种新型高分辨表征技术,纳米孔已经在DNA纳米技术研究中崭露头角,被用于原位追踪和分析核酸分子的自组装行为.另一方面,DNA纳米技术也为纳米孔传感所面临的技术瓶颈提供了更多样化的解决思路,如借助功能核酸(Aptamer或DNAzyme)和无酶扩增核酸分子线路实现纳米孔对待测物的特异性增敏检测.本专论旨在通过对近期纳米孔技术与核酸自组装的跨领域研究成果进行系统性回顾,总结并展望纳米孔传感领域内核酸自组装的研究进展,以期为单分子生物分析、信息检索、基因分型和临床诊断等领域提供新思路和新方法.  相似文献   

14.
纳米孔莫来石陶瓷材料的制备   总被引:2,自引:2,他引:0  
以正硅酸乙酯(TEOS)提供硅源、纳米氧化铝(d90=50 nm)提供铝源,通过溶胶-凝胶法与超临界干燥技术,制备了分散纳米氧化铝的SiO2气凝胶块体,所得复合气凝胶块体经1200℃、1300℃热处理后,得到了纳米孔莫来石陶瓷材料。XRD测试表明:凝胶体在1 200℃热处理后发生了莫来石化,1300℃莫来石化基本完成。压汞仪与场发射扫描电镜结果显示:凝胶块体经1 200、1 300℃热处理后,形成了具有纳米多孔结构的莫来石陶瓷材料,其骨架结构包含有200~400 nm的大孔,以及大量位于其孔壁上的6~30 nm的介孔。由于莫来石化的进行,热处理后的陶瓷材料的纳米孔结构具有更高的热稳定性。  相似文献   

15.
本文利用介孔碳的软模板合成方法和阳极氧化铝膜的孔道限域性制备有序的介孔碳纳米纤维。然后以介孔碳纳米纤维作载体,采用温和的非共价方法和乙二醇还原法负载铂纳米粒子来制备铂催化剂。实验结果表明,温和的功能化方法有利于载体介孔结构的保持和铂纳米粒子的分散,并且还原反应条件对铂纳米粒子的负载具有重要影响。最后通过循环伏安法研究了铂催化剂的电化学性质,结果表明这些铂催化剂具有良好的甲醇电催化活性和稳定性。  相似文献   

16.
纳米孔检测技术以其独特的优势在电分析化学领域引起广泛的关注,基于此构建的电化学传感器及电化学整流开关已被用于多种目标物分析,如单分子蛋白检测及DNA测序。纳米孔既可由生物分子制成,也可由固态材料制备。其中,固态纳米孔易于修饰,机械性能、稳定性等相对较好,应用较为广泛。纳米孔检测技术主要的输出信号为电阻脉冲和电流-电压曲线(离子整流),本文以两种输出信号为重点,详细介绍了纳米孔检测的原理和应用,总结了近年来固态单纳米孔通道在分析化学领域的发展,并对该领域未来的发展趋势和应用前景进行了展望。  相似文献   

17.
纳米自组装合成大孔容介孔氧化铝   总被引:5,自引:0,他引:5  
王鼎聪 《中国科学B辑》2009,39(5):420-431
提出了一种纳米自组装大孔容介孔氧化铝固体材料的制备方法.提出了二级纳米自组装机理和框架式大孔容介孔固体材料形成机理.在一级纳米自组装体,超增溶胶团中,氢氧化铝沉淀与VB值小于1的表面活性剂原位自组装成线状、棒状二级纳米自组装体.二级纳米自组装氢氧化铝焙烧形成棒状纳米氧化铝.对于大孔容介孔固体材料的形成,我们提出了没有外表面要求限制,纳米氧化铝组成没有连续外表面的框架式介孔固体材料机理.采用二级纳米自组装体为模板剂合成出适用于渣油加氢处理催化剂的大孔容介孔固体材料,物理性质为1.8~2.7mL·g^-1的孔容、180~429m^2·g^-1比表面、17~57nm的平均孔径、大于10nm的孔为81%~94%、87%~93%的孔隙率和7.7~25N/mm的强度.  相似文献   

18.
魏晋欣  陈雅文  张鸿洋  庄赞勇  于岩 《催化学报》2021,42(1):78-86,后插2-后插7
金属有机框架(MOFs)材料因其高孔隙率特性在气体吸附分离、药物传递、催化等领域具有广泛应用.近年来,将功能化纳米颗粒(NPs)封装在MOFs中的研究在催化领域引起了科学家的兴趣.其中,较大比表面积的MOFs可以为NPs的分散和固定提供理想的平台,而NPs反过来可以为催化反应引入更多的活性位点,提高催化效率.然而,MOFs本身的孔隙常局限于微孔(<2 nm),这极大地限制了NPs在MOFs孔隙中的有效封装.因此,设计并制备含有介孔(2?50 nm)或大孔(>50 nm)的多级孔MOFs,揭示其孔径大小对复杂NPs/MOFs复合催化剂催化性能的影响具有重要意义.然而,具有不同孔径MOFs的可控制备具有巨大挑战性,MOFs孔径如何影响和调控NPs/MOFs复合材料催化活性是一个悬而未决的科学问题.本文结合金属离子刻蚀法和调控配体法设计了两种具有不同孔径(大孔和介孔)的UiO-66,并系统研究了孔径大小对CdS NPs的分布以及所形成的复合催化剂CdS/UiO-66的催化性能的影响及机制.我们首先阐明了UiO-66调控孔径后影响和修饰CdS NPs的空间分布:对于具有开放大孔结构的UiO-66纳米笼,CdS NPs倾向于自发沉积在UiO-66纳米笼内壁上.相比之下,CdS NPs则主要附着于介孔UiO-66的外表面.据此,具有大孔和介孔结构的CdS/UiO-66表现出不同的光催化性能.以光还原4-硝基苯胺反应为例,大孔CdS/UiO-66的反应速率常数是介孔和实心样品的3?13倍,且优于许多文献报道的CdS复合材料催化剂,表明大孔结构在制备高效复合催化材料上的潜在优势.通过光吸收能力、能级结构等计算表征,该催化剂的电子空穴对传输遵循S-型异质结光催化机制;大孔CdS/UiO-66具有较高光催化活性可归因于纳米笼对NPs的限域效应,即CdS被限制在UiO-66纳米笼内,缩短了催化剂与底物之间的电子传输距离;空心纳米笼结构则保护其内部的CdS NPs免受光腐蚀的影响,进而获得较高的催化效率和循环稳定性.可见,本文提出了一种结合离子刻蚀法和调控配体法获得具有不同孔径MOFs的有效策略,阐明了调控MOFs的孔径尺寸可以影响NPs的空间分布,是制约其性能的关键因素,有望为高效催化剂的设计及催化机制的研究提供新的依据.  相似文献   

19.
结合作者课题组的工作,对近年来基于超临界CO_2的聚合物微孔发泡以及聚合物/碳纳米粒子复合体系的微孔发泡与电磁屏蔽进行了综述。首先对单一聚合物、多元聚合物和热固性聚合物的微孔发泡、泡孔结构和泡沫性能进行归纳总结,指出通过共混、共聚、结晶、交联网络与发泡工艺的调控可以获得泡孔尺寸更小、泡孔密度更高的聚合物微孔泡沫。随后,对热塑性聚合物/碳纳米粒子复合体系、热固性聚合物/碳纳米粒子复合体系的微孔发泡进行了综述,着重介绍了碳纳米粒子与泡孔结构之间的相互作用,指出借助于微孔发泡过程可以诱导碳纳米粒子在泡壁中富集、聚并、相互连接形成导电通道,从而制备出具有优异导电性和电磁屏蔽效应的轻质聚合物微孔材料。最后,对聚合物微孔材料以及聚合物微孔复合材料的未来发展提出了一些自己的看法。  相似文献   

20.
用十八烷基三甲基溴化铵(STAB)作模板剂,左旋香茅醇(CN)为结构助剂,利用溶胶-凝胶法,在CN/STAB摩尔比1∶1条件下制备了介孔二氧化硅纳米蚕茧;采用扫描电镜和透射电镜分析了产物的结构,并对其进行了氮气吸附-脱附测试.结果表明,所制备的介孔二氧化硅纳米蚕茧的孔道与蚕茧表面平行;搅拌速度对介孔二氧化硅纳米蚕茧的长度有较大的影响,随着搅拌速度的增加,其长度减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号