首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   4篇
化学   9篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2009年   1篇
  2006年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
采用三次纳米自组装合成法,制备了一种以二次纳米自组装Al2O3为主体的大孔主客体催化剂FA-40,具有0.78 cm3·g-1的孔容、114 m2·g-1的比表面积、27 nm的平均孔径、6.0 nm和40 nm的双峰孔结构、孔分布在10~100 nm高度集中、低堆积密度为0.56 g·cm-3、活性金属含量高达35.70%。XRD和TEM分析结果显示,活性金属以直径小于2 nm的微晶态纳米粒子形式均匀分散于主体表面。采用劣质催化裂化柴油进行20 h加氢实验评价,反应趋于稳定时,FA-40的脱硫、脱氮及芳烃饱和率分别达到94.4%、95.5%和67.9%,与F-5相比分别提高了20%、80%和140%。300 h的长周期加氢实验表明,FA-40具有良好的加氢性能。  相似文献   
2.
采用三次纳米自组装合成法,制备了一种以二次纳米自组装Al2O3为主体的大孔主客体催化剂FA-40,具有0.78cm3·g-1的孔容、114m2·g-1的比表面积、27nm的平均孔径、6.0nm和40nm的双峰孔结构、孔分布在10~100nm高度集中、低堆积密度为0.56g·cm-3、活性金属含量高达35.70%。XRD和TEM分析结果显示,活性金属以直径小于2nm的微晶态纳米粒子形式均匀分散于主体表面。采用劣质催化裂化柴油进行20h加氢实验评价,反应趋于稳定时,FA-40的脱硫、脱氮及芳烃饱和率分别达到94.4%、95.5%和67.9%,与F-5相比分别提高了20%、80%和140%。300h的长周期加氢实验表明,FA-40具有良好的加氢性能。  相似文献   
3.
王鼎聪 《中国科学B辑》2006,36(4):338-346
提出了一种原位合成纳米粒子的方法, 熔盐/超增溶胶团自组装法. 发现了熔盐的超增溶现象, 并提出了超增溶自组装机理. 在5%VB值小于1的表面活性剂和烃类组分形成连续相的反相胶束中超增溶自组装95%的熔盐, 熔盐形成多面体立方相, 并与表面活性剂的亲水基以静电吸附方式组装. 以超增溶胶团为纳米反应器, 熔盐与沉淀剂在胶团中进行原位合成. 该原位合成法具有不用水为溶剂、最大的沉淀量、粒子呈纳米级粒子和粒径分布范围窄等特点.  相似文献   
4.
采用纳米自组装法合成的大孔氧化铝催化材料FA-06,具有1.39 mL·g-1的孔容、297 m2·g-1的比表面积、32.4 nm的最可几孔径和81.85%的孔隙率,孔道集中分布于10~30 nm和30~60 nm的比例分别占35.61%和40.88%。GPC结果表明,对于形成反相超增溶胶束的高聚物RHP,可通过改变聚异丁烯马来酸酐(PIBSA)的量来控制其分散度和相对分子量,进而控制大孔氧化铝的孔道结构。TEM及SEM结果表明,纳米自组装氢氧化铝棒长600~800 nm,直径为250~300 nm,经550.0℃焙烧后,形成直径为150~300 nm,长度为400~600 nm的纳米氧化铝棒。从焙烧后的纳米自组装氢氧化铝的XRD结果证明了3种γ-Al2O3的前躯体完全转化为γ-Al2O3。结合TG的结果,表明在605.0℃时,拟薄水铝石完全转化为γ-Al2O3,总失重可达61.88%。基于以上实验结果,模拟了反向超增溶胶束、氢氧化铝及大孔氧化铝的分子自组装和纳米自组装的形成过程,并提出了纳米自组装大孔氧化铝贯穿孔道的NSA(Nano Self-Assembly)形成机理。  相似文献   
5.
采用纳米自组装方法以钼镍铵溶液作为浸渍液制备贯穿性介孔Mo-Ni-NH3/γ-Al2O3催化剂。利用BET比表面积测试法(BET)、CO吸附原位红外、X射线衍射(XRD)、透射电子显微镜(TEM)等表征手段,考察了表面活性剂、助溶剂种类、用量在自组装过程中对催化剂的分散性及孔结构的影响。结果表明,改性后催化剂TOP-3的孔性质最好,其比表面积为183 m2·g-1,孔容为0.46 m3·g-1,平均孔径为10.11 nm,且孔道在10~30 nm处高度集中,高达35.63%;红外CO原位吸附结果证明了Mo2+,Mo4+和Ni2+活性中心的存在,且均以线式吸附态吸附CO;从XRD分析可发现催化剂NOP-3、NOP-4在2θ=15.9°,20.8°,22.2°和30.8°处出现了Al2(Mo O4)3的(111),(102),(021),(312)4个晶面的特征衍射峰,而TOP系列催化剂的特征峰弥散,说明TEA与OP-20复配可以改善金属的分散性。TEM表征结果证明了15~20 nm贯穿性多孔结构的存在,且分散均匀。此结构有利于大分子扩散,适合于重油加氢处理。  相似文献   
6.
纳米自组装合成大孔容介孔氧化铝   总被引:5,自引:0,他引:5  
王鼎聪 《中国科学B辑》2009,39(5):420-431
提出了一种纳米自组装大孔容介孔氧化铝固体材料的制备方法.提出了二级纳米自组装机理和框架式大孔容介孔固体材料形成机理.在一级纳米自组装体,超增溶胶团中,氢氧化铝沉淀与VB值小于1的表面活性剂原位自组装成线状、棒状二级纳米自组装体.二级纳米自组装氢氧化铝焙烧形成棒状纳米氧化铝.对于大孔容介孔固体材料的形成,我们提出了没有外表面要求限制,纳米氧化铝组成没有连续外表面的框架式介孔固体材料机理.采用二级纳米自组装体为模板剂合成出适用于渣油加氢处理催化剂的大孔容介孔固体材料,物理性质为1.8~2.7mL·g^-1的孔容、180~429m^2·g^-1比表面、17~57nm的平均孔径、大于10nm的孔为81%~94%、87%~93%的孔隙率和7.7~25N/mm的强度.  相似文献   
7.
本文提出了第三次纳米自组装的正向胶束、反向胶束法,并利用其制备了一种大孔主客体催化材料.以二次纳米自组装Al2O3为主体,根据压汞法,正向胶束法制备的催化材料孔容为0.62~0.80cm^3/g、比表面积为123~137mZ/g、平均孔径为20~23.3nm,孔径分布大于30nm范围的可达58.69%,堆积密度为0.43—0.55g/cm^3,活性金属负载量可达36.99%;由氮气吸附法,反向胶柬法制备的催化材料具有0.74cm^3/g的孔容、262m2/g的比表面积、11.8nm的平均孔径.结果显示,活性金属以球形或棒状的结晶态存在于主体表面,其中,正向胶束法中为直径2-3nm的微晶态纳米粒子,反向胶束法中为直径0.1μm、长1-2.5μm的棒状体.采用催化裂化柴油和催化裂化重循环油(1:2,体积比)混合而得油品对FA.Z20进行50h加氢评价实验,其单位体积活性金属的脱硫率、脱氮率、脱芳烃率(四环、五环)分别为参比剂的4.6、2.1和4.7倍,初活性良好,具有较强的抗结焦性能.  相似文献   
8.
采用纳米自组装法合成的大孔氧化铝催化材料FA-06, 具有1.39 mL·g-1的孔容、297 m2·g-1的比表面积、32.4 nm的最可几孔径和81.85%的孔隙率, 孔道集中分布于10~30 nm和30~60 nm的比例分别占35.61%和40.88%。GPC结果表明, 对于形成反相超增溶胶束的高聚物RHP, 可通过改变聚异丁烯马来酸酐(PIBSA)的量来控制其分散度和相对分子量, 进而控制大孔氧化铝的孔道结构。TEM及SEM结果表明, 纳米自组装氢氧化铝棒长600~800 nm, 直径为250~300 nm, 经550.0 ℃焙烧后, 形成直径为150~300 nm, 长度为400~600 nm的纳米氧化铝棒。从焙烧后的纳米自组装氢氧化铝的XRD结果证明了3种γ-Al2O3的前躯体完全转化为γ-Al2O3。结合TG的结果, 表明在605.0 ℃时, 拟薄水铝石完全转化为γ-Al2O3, 总失重可达61.88%。基于以上实验结果, 模拟了反向超增溶胶束、氢氧化铝及大孔氧化铝的分子自组装和纳米自组装的形成过程, 并提出了纳米自组装大孔氧化铝贯穿孔道的NSA(Nano Self-Assembly)形成机理。  相似文献   
9.
模板法在纳米材料的合成过程中已成为一种非常重要的技术。利用其结构导向、骨架填充、平衡和匹配电荷等作用,可以达到精确地调控纳米材料孔道的大小、形状及结构的目的。本文主要对模板剂的种类进行了详细的分类,重点介绍了硬模板法和软模板法在合成纳米材料过程中的现状及特点,并具体介绍了模板剂在合成纳米生物材料及纳米催化剂、电化学、化工合成等方面的应用;阐述了模板法在介孔材料合成过程中的重要性,指出了目前模板剂方法存在的优缺点;提出了模板剂在超分子功能材料、光化学反应及催化工业等方面应用的纳米材料合成中的发展趋势和良好前景。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号