首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Here we show that essentially any Fe compounds spanning Fe salts, nanoparticles, and buckyferrocene could serve as catalysts for single-walled carbon nanotube (SWNT) forest growth when supported on AlO(x) and annealed in hydrogen. This observation was explained by subsurface diffusion of Fe atoms into the AlO(x) support induced by hydrogen annealing where most of the deposited Fe left the surface and the remaining Fe atoms reconfigured into small nanoparticles suitable for SWNT growth. Interestingly, the average diameters of the SWNTs grown from all iron compounds studied were nearly identical (2.8-3.1 nm). We interpret that the offsetting effects of Ostwald ripening and subsurface diffusion resulted in the ability to grow SWNT forests with similar average diameters regardless of the initial Fe catalyst.  相似文献   

2.
Ligand-stabilized nanocrystals (NCs) were strongly bound to the nanotube surfaces by simple van der Waals forces. Linear arrays of CdSe and InP quantum dots were formed by self-assembly using the grooves in bundles of carbon single-walled nanotubes (SWNTs) as a one-dimensional template. A simple geometrical model explains the ordering in terms of the anisotropic properties of the nanotube surface. CdSe quantum rods were also observed to self-organize onto SWNTs with their long axis parallel to the nanotube axis. This approach offers a route to the formation of ordered NC/SWNT architectures that avoids problems associated with surface derivatization.  相似文献   

3.
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.  相似文献   

4.
细胞在单壁碳纳米管无纺膜支架上的生长行为   总被引:1,自引:0,他引:1  
以具有纳米拓扑结构特征的单壁碳纳米管无纺膜材料为支架, 选择在促进组织修复和再生中起重要作用的成纤维细胞株作为实验细胞, 研究了该材料对细胞生长行为的影响. 通过X射线光电子能谱分析, 表征其在细胞培养液中浸泡后的表面化学组成; 通过细胞粘附、增殖实验以及细胞骨架发育观察, 探讨了材料的微观纳米拓扑结构对细胞的作用, 以及与碳纤维、聚氨酯浇铸膜和空白培养板材料对细胞作用的差异和可能的机理; 并采用双层细胞培养装置, 研究了该材料通过细胞通讯途径对在其它材料上生长的细胞增殖的影响. 实验结果表明, 单壁碳纳米管无纺膜材料为细胞提供了十分接近天然细胞外基质的人造微环境, 具有显著促进细胞粘附和长时间增殖的功能, 而且生长在该支架上的细胞可能通过旁分泌方式将某些化学介质分泌到细胞外液中, 经局部扩散作用于在其它材料上生长的细胞, 促进它们的增殖.  相似文献   

5.
The aggregation behavior of colloidal single-walled carbon nanotubes (SWNT) in dilute aqueous suspensions was investigated using a novel light scattering measurement technique. The aggregation of SWNT in three suspensions was examined: (1) nanotubes after acid treatment; (2) as-received nanotubes stabilized by a nonionic surfactant; and (3) acid-treated nanotubes with nonionic surfactant. Continuous light scattering measurements of the SWNT suspensions (probing the 38-436 nm length scale) made over two weeks showed that the nanotubes in each sample formed networks with fractal-like structures. The as-received nanotubes were stable over the measurement period, while the acid-treated nanotube suspension showed greater dispersion variability over time, yielding looser structures at large length scales and more compact structures at smaller length scales. The addition of surfactant to the acid-treated suspension significantly enhanced nanotube dispersion.  相似文献   

6.
A fourth-generation (G4) poly(amidoamine) (PAMAM) dendrimer (G4-NH2) has been used as a template to deliver nearly monodispersed catalyst nanoparticles to SiO2/Si, Ti/Si, sapphire, and porous anodic alumina (PAA) substrates. Fe2O3 nanoparticles obtained after calcination of the immobilized Fe3+/G4-NH2 composite served as catalytic "seeds" for the growth of single-wall carbon nanotubes (SWNTs) by microwave plasma-enhanced CVD (PECVD). To surmount the difficulty associated with SWNT growth via PECVD, reaction conditions that promote the stabilization of Fe nanoparticles, resulting in enhanced SWNT selectivity and quality, have been identified. In particular, in situ annealing of Fe catalyst in an N2 atmosphere was found to improve SWNT selectivity and quality. H2 prereduction at 900 degrees C for 5 min was also found to enhance SWNT selectivity and quality for SiO2/Si supported catalyst, albeit of lower quality for sapphire supported catalyst. The application of positive dc bias voltage (+200 V) during SWNT growth was shown to be very effective in removing amorphous carbon impurities while enhancing graphitization, SWNT selectivity, and vertical alignment. The results of this study should promote the use of exposed Fe nanoparticles supported on different substrates for the growth of high-quality SWNTs by PECVD.  相似文献   

7.
Here, we report a highly efficient growth of single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) on conducting metal foils. We found that foils made of Ni-based alloys with Cr or Fe serve as excellent substrates for SWNT (DWNT) synthesis. In significant contrast, a CNT grown on Ni, Fe foils contains a significant ratio of MWNTs. This result opens up an economical route for the mass production of SWNT (DWNT) forests and also enables the straightforward integration of CNTs into nanoelectronic devices, such as field emission displays.  相似文献   

8.
The growth of single wall carbon nanotubes (SWNTs) mediated by metal nanoparticles is considered within (i) the surface diffusion growth kinetics model coupled with (ii) a thermal model taking into account heat release of carbon adsorption-desorption on nanotube surface and carbon incorporation into the nanotube wall and (iii) carbon nanotube-inert gas collisional heat exchange. Numerical simulations performed together with analytical estimates reveal various temperature regimes occurring during SWNT growth. During the initial stage, which is characterized by SWNT lengths that are shorter than the surface diffusion length of carbon atoms adsorbed on the SWNT wall, the SWNT temperature remains constant and is significantly higher than that of the ambient gas. After this stage the SWNT temperature decreases towards that of gas and becomes nonuniformly distributed over the length of the SWNT. The rate of SWNT cooling depends on the SWNT-gas collisional energy transfer that, from molecular dynamics simulations, is seen to be efficient only in the SWNT radial direction. The decreasing SWNT temperature may lead to solidification of the catalytic metal nanoparticle terminating SWNT growth or triggering nucleation of a new carbon layer and growth of multiwall carbon nanotubes.  相似文献   

9.
A methodology that takes into account the (n,m) structure of single-walled carbon nanotubes (SWNTs), through an exciton-exciton resonance model and an electron-phonon interaction model, was employed in order to evaluate the semiconducting (n,m) abundance of two SWNT samples (i.e., Co-MCM-41 and HiPco). This was based on photoluminescence and near-infrared absorption data obtained on aqueous suspensions of individually dispersed SWNTs. In the absence of known (n,m) abundance SWNT samples, we resorted to determining the diameter distribution curves for both samples, which were found to obey an unsymmetrical log-normal distribution, typical for vapor-phase particle growth. Using this log-normal function, we reconstructed the near-infrared E S11 absorption spectrum of the narrow diameter distribution Co-MCM-41 SWNT sample, which in turn enabled us to assess the predictions of these two theoretical models. High spectral reconstruction accuracy was obtained from the electron-phonon interaction model when considering (11,0) and (10,0) zigzag nanotubes, along with (n,m) line widths inversely proportional to their extinction coefficients.  相似文献   

10.
Probing order in nanotube systems is of fundamental importance in devising applications of these tubes in field emission applications as well as for components of composite materials. We use near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to qualitatively and quantitatively study the degree of order and alignment in a wide range of carbon nanotube-based systems, including single-walled carbon nanotube (SWNT) powder, SWNT films, and aligned multiwalled carbon nanotubes. The results are compared to analogous data obtained from a highly ordered pyrolytic graphite (HOPG) sample.  相似文献   

11.
The (n,m) population distribution of single-walled carbon nanotubes obtained on supported CoMo catalysts has been determined by photoluminescence and optical absorption. It has been found that the (n,m) distribution can be controlled by varying the gaseous feed composition, the reaction temperature, and the type of catalyst support used. When using CO as a feed over CoMo/SiO2 catalysts, increasing the synthesis temperature results in an increase in nanotube diameter, without a change in the chiral angle. By contrast, by changing the support from SiO2 to MgO, nanotubes with similar diameter but different chiral angles are obtained. Finally, keeping the same reaction conditions but varying the composition of the gaseous feed results in different (n,m) distribution. The clearly different distributions obtained when varying catalysts support and/or reaction conditions demonstrate that the (n,m) distribution is a result of differences in the growth kinetics, which in turn depends on the nanotube cap-metal cluster interaction.  相似文献   

12.
The presence of metallic nanotubes in as-grown single walled carbon nanotubes (SWNTs) is the major bottleneck for their applications in field-effect transistors. Herein, we present a method to synthesize enriched, semiconducting nanotube arrays on quartz substrate. It was discovered that introducing appropriate amounts of water could effectively remove the metallic nanotubes and significantly enhance the density of SWNT arrays. More importantly, we proposed and confirmed that the high growth selectivity originates from the etching effect of water and the difference in the chemical reactivities of metallic and semiconducting nanotubes. Three important rules were summarized for achieving a high selectivity in growing semiconducting nanotubes by systematically investigating the relationship among water concentration, carbon feeding rate, and the percentage of semiconducting nanotubes in the produced SWNT arrays. Furthermore, these three rules can be applied to the growth of random SWNT networks on silicon wafers.  相似文献   

13.
Cutting of single-walled carbon nanotubes (SWNT) has been achieved by extensive ozonolysis at room temperature. Perfluoropolyether (PFPE) was selected as a medium for cutting SWNT due to its high solubility for ozone (O3). A mixture of 9 wt % of O3 in O2 was bubbled through a homogeneous suspension of pristine SWNT in PFPE, at room temperature. The intense disorder mode in the Raman spectra of ozonated SWNT indicates that extensive reaction with the sidewalls of SWNT occurs during ozonolysis. Atomic force microscopy (AFM) images of SWNT, before and after ozonolysis, provided a measure of the extent of the cutting effects. Monitoring of the evolved gases for both pristine and purified SWNT indicates CO2 was produced during the ozonolysis process with a dependence on both system pressure and temperature. During heating, FTIR analysis of gases released indicated that carbon oxygen groups on the sidewalls of SWNT are released as CO2. SWNT was found to be extensively cut after an ozone treatment with a yield of approximately 80% of the original carbon.  相似文献   

14.
Single-walled carbon nanotubes (SWNTs) are typically long (greater than or approximately equal 100 nm) and have been well established as novel quasi one-dimensional systems with interesting electrical, mechanical, and optical properties. Here, quasi zero-dimensional SWNTs with finite lengths down to the molecular scale (7.5 nm in average) were obtained by length separation using a density gradient ultracentrifugation method. Different sedimentation rates of nanotubes with different lengths in a density gradient were taken advantage of to sort SWNTs according to length. Optical experiments on the SWNT fractions revealed that the UV-vis-NIR absorption and photoluminescence peaks of the ultrashort SWNTs blue-shift up to approximately 30 meV compared to long nanotubes, owing to quantum confinement effects along the length of ultrashort SWNTs. These nanotube capsules essentially correspond to SWNT quantum dots.  相似文献   

15.
A procedure, combining molecular simulation, Raman spectroscopy, and standard nitrogen adsorption, is developed for structural characterization of single-walled carbon nanotube (SWNT) samples. Grand canonical Monte Carlo simulations of nitrogen adsorption are performed on the external and internal adsorption sites of homogeneous arrays of SWNTs of diameters previously determined by Raman spectroscopy of the sample. The results show the importance of the peripheral grooves of a nanotube bundle at low relative pressure and the insensitivity of nanotube diameter toward adsorption on the external surface of the bundle at higher pressures. Simulations also reveal that samples containing thin nanotubes have less internal adsorption capacity that saturates at lower pressure than those comprising large diameter nanotubes. The fraction of open-ended nanotubes in a sample can be estimated by scaling the simulated internal adsorption inside nanotubes to obtain a near perfect fit between simulated and experimental isotherms. This procedure allows extrapolation of adsorption properties to conditions in which all nanotubes in the sample are open-ended.  相似文献   

16.
In this Communication, we have demonstrated a facile and effective approach to identify the structure of the superlong well-aligned single-walled carbon nanotubes (SWNTs) by the combination of electrodeposition of metal (Ag) with Raman spectroscopy. The suitable density and the visibility of the Ag-deposited long oriented nanotubes make it possible to acquire Raman spectra from isolated individual nanotubes very easily. The results reveal that the well-oriented SWNT arrays on SiO2/Si wafer fabricated by EtOH chemical vapor deposition using Fe/Mo nanoparticles as catalyst exhibit a low percentage of metallic SWNTs (5%). Among other SWNTs about 62.3% are semiconducting SWNTs, and a small amount of nanotubes are quasimetallic. About 32% are a so-called quasi-insulator, which is caused inevitably by the defects during growth. Furthermore, the structural uniformity of the long SWNTs can be also evaluated by the deposition of Ag along the length and Raman spectroscopy. This method also provides an approach to deposit other metals on long SWNTs, which could have various potential applications such as for use as sensors, etc. More importantly, this facile method can be applied to long SWNT arrays fabricated from other different catalytic systems so that the relationship between the growth conditions and the structures of SWNTs are expected to be ruled out.  相似文献   

17.
The dispersibility and bundle defoliation of single-walled carbon nanotubes (SWNTs) of small diameter (<1 nm) have been evaluated on CoMoCAT samples with narrow distribution of diameters. As previously observed by photoluminescence and Raman spectroscopy, the CoMoCAT sample exhibits a uniquely narrow distribution of (n,m) structures that remains unchanged after different dispersion conditions. This narrow distribution allowed us to develop a method for quantifying the dispersability of the samples from their optical absorption spectra in terms of two ratios: the "resonance ratio" and the "normalized width." The former is defined as the quotient of the resonant band area and its nonresonant background. The latter is defined as the ratio of the width of the band at half-height to the peak height on a spectrum that has been normalized at 900 nm, making this an intensive property, rather than varying with the path length. In this study of the CoMoCAT sample, we have used the S22 transition corresponding to the (6,5) nanotube to do these calculations, which is the most abundant species. These two ratios provide a quantitative tool to compare different dispersion parameters (time of sonication, degree of centrifugation, etc.) on the same type of sample. From this comparison, an optimal procedure that maximizes the spectral features was selected; this procedure allowed us to contrast various surfactants at different pH values and concentrations. Several surfactants were as good or even better than the one we have used in previous studies, dodecylbenesulfonic acid sodium salt (NaDDBS). Despite differences in their dispersion abilities, none of the surfactants investigated generated new features in the absorption spectra nor changed the distribution of nanotube types, which confirms that the high selectivity of the CoMoCAT sample is in the original sample rather than caused by selective suspension of specific (n,m) nanotubes.  相似文献   

18.
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.  相似文献   

19.
Millimeter-long and well-aligned single-walled carbon nanotubes (SWNTs) have been produced on silica/silicon surfaces using the carbon monoxide chemical vapor deposition (CO-CVD) method. The orientation of the nanotube arrays can be well-controlled by the gas flow during the growth. The majority of the orientated SWNTs are straight and individual. The length of the nanotubes can be >2 mm for a 10 min growth. Furthermore, multidimensional crossed-networks of SWNT can be easily generated by multistep processes. These results present a great opportunity in the controllable production of organized SWNT arrays for large-scale carbon nanotube-based nanodevice fabrication.  相似文献   

20.
Raman spectroscopy and imaging of ultralong carbon nanotubes   总被引:1,自引:0,他引:1  
Raman spectroscopy and confocal Raman imaging with 514 nm excitation was performed on recently developed ultralong carbon nanotubes grown by the "fast-heating" chemical vapor deposition (CVD) method. The ultralong nanotubes are found to consist of both semiconducting and metallic types, with spectra that are consistent with the nanotubes being single walled. Characterization of nanotube diameters shows that short nanotubes appearing near the sample catalyst region have a broader distribution than is observed for the ultralong nanotubes. The narrow diameter distribution is determined by uniformity of catalyst particle size and gives additional evidence for the proposed "kite" mechanism for long nanotube growth. Raman imaging was performed over large length scales (up to 140 microm). Imaging reveals the ultralong nanotubes to be of high quality, with a very low defect density. Variations in G-band frequencies and intensity demonstrate the occurrence of minor structural changes and variations in nanotube-substrate interaction along the length of the nanotubes. Evidence also demonstrates that larger structural changes resulting in a full chirality change can occur in these nanotube types to produce a metal-to-semiconductor intramolecular junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号