首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
It is shown that in a truly bimodal coal-water slurry the hydrodynamic interactions between the coarse particles impose on the fine fraction a shear rate higher than that applied externally by the viscometer walls. A semi-empirical function of the coarse volume fraction is obtained for this correction factor to the applied shear rate. The derivation of this shear correction factor is based on lubrication concepts and introduces the maximum packing fraction,ø m, at which flow can take place.ø m is obtainable from a simple dry packing experiment. It is shown that the contribution of the coarse particles to the viscosity rise can be successfully described by a viscosity model employing the same concepts used to derive the shear correction factor. The bimodal model is applied in the high shear limit to polymodal coal slurries with a continuous particle size distribution. In the model, the contribution of the coarse particles to the viscosity rise is taken from separate viscosity measurements for the coarse coal particles, while the contribution to the viscosity of the fine coal particles is taken to be that given by the measured viscosity of colloidal suspensions of monomodal rigid spheres. It is shown that there is a ratio of coarse to fine fraction volumes in the continuous size distribution, corresponding to a specific separating particle size, for which the measured viscosities of the polymodal slurries match almost perfectly over the whole solids volume fraction range with the viscosity values obtained using the bimodal approach. The match is found to be relatively insensitive to the precise value of the separating particle size.  相似文献   

2.
In order to investigate the effect of the particle size distribution on the rheological properties of concentrated colloidal dispersions both steady-state shear and oscillatory measurements have been performed on well-characterized bimodal dispersions of sterically stabilized PMMA particles. Replacing a minor amount of large particles by small ones in a concentrated dispersion, keeping the total effective volume fraction constant, decreases the viscosity quite drastically. On the other hand, replacing a small amount of small particles by big ones hardly effects the viscosity at all. This behavior can be attributed to the deformability of the stabilizing polymer layer. A procedure is proposed to calculate the limiting viscosities in a bimodal colloidal dispersion starting from the characteristics of the monodisperse systems. A good agreement has been obtained between the calculated values and the experimental results. The linear viscoelastic properties of the concentrated dispersions have been investigated by means of oscillatory measurements. The plateau values of the storage modulus for the bimodal dispersions decrease with an increasing fraction of the coarse particles. By substituting the bimodal dispersion by an equivalent monodisperse system the storage modulus can be superimposed on the values for the monodisperse suspensions when plotted as a function of the mean interparticle distance.  相似文献   

3.
Techniques for measuring the fundamental flow properties of as-mined Victorian brown coal suspensions are developed. Flow properties are presented for Morwell, Yallourn and Loy Yang coals as a function of concentration for fixed particle size distribution. Even at the relatively low solids concentration of 20 to 30 percent by weight, the suspensions exhibit complex non-Newtonian characteristics. Generally at high concentration, the suspensions are thixotropic with a shear rate dependent viscosity and exhibit a yield stress. The inherent thixotropy of the coals can be exploited and it is technically but perhaps not economically feasible to transport the as-mined coals in a pipeline. The power requirement to pump the coals in a pipeline is found to be 10 to 30 times that required to pump black coal in the Black Mesa pipeline in the U.S.A. The differences in the rheological properties of the three coals is related to the surface properties of the coal particle — expressed in terms of carboxylate and inorganic cation content, and to differences in the pore volume of the coals. The flow characteristics of one coal can be converted to that of another simply by varying either the carboxylate or ionic content of the suspension.  相似文献   

4.
Model composites of spherical glass particles dispersed in a matrix of high density polyethylene were prepared both with and without interfacial modification by an azidofunctional trialkoxysilane. Dynamic mechanical measurements of the composites in the melt state were recorded. The unmodified composites behave as theoretically predicted and the effect of particle—particle interaction at high volume fractions can be measured. The composites with a modified interfacial region have greater shear moduli due to the effect of a region surrounding the particle modified by the silane. The material in this region is largely bound to the glass surface and was examined by Fourier transform infrared spectroscopy after extraction of the bulk matrix. Theoretical calculations are shown to be useful in calculating the mechanical properties and volume fraction of the interfacial region.  相似文献   

5.
The relationship between particle size distribution and viscosity of concentrated dispersions is of great industrial importance, since it is the key to get high solids dispersions or suspensions. The problem is treated here experimentally as well as theoretically for the special case of strongly interacting colloidal particles. An empirical model based on a generalized Quemada equation is used to describe η as a function of volume fraction for mono- as well as multimodal dispersions. The pre-factor η˜ accounts for the shear rate dependence of η and does not affect the shape of the η vs φ curves. It is shown here for the first time that colloidal interactions do not show up in the maximum packing parameter and φmax can be calculated from the particle size distribution without further knowledge of the interactions among the suspended particles. On the other hand, the exponent ɛ is controlled by the interactions among the particles. Starting from a limiting value of 2 for non-interacting either colloidal or non-colloidal particles, ɛ generally increases strongly with decreasing particle size. For a given particle system it then can be expressed as a function of the number average particle diameter. As a consequence, the viscosity of bimodal dispersions varies not only with the size ratio of large to small particles, but also depends on the absolute particle size going through a minimum as the size ratio increases. Furthermore, the well-known viscosity minimum for bimodal dispersions with volumetric mixing ratios of around 30/70 of small to large particles is shown to vanish if colloidal interactions contribute significantly. Received: 7 June 2000/Accepted: 12 February 2001  相似文献   

6.
This work is a theoretical study on the effects of agglomeration on the fluidity and plasticity of a suspension of neutrally buoyant particles in a Newtonian fluid. The dynamics of a cluster of permanently attached spherical particles in a simple shear field is analyzed. The viscous and plastic components of the drag force acting on each of the agglomerated particles is then calculated and found to depend on the size of the individual particle unit, its location being relative to the center of the cluster and the material properties of the engulfing fluid. This information in conjunction with the knowledge of the interparticle cohesive forces is used to establish criteria for the agglomerate size reduction during dispersive mixing. From the kinematics of the cluster movement and the forces acting on its particulate components the rate of energy dissipation is calculated and utilized to evaluate the viscosity and yield stress of the suspension. These rheological parameters depend on the volume fraction and architecture of the agglomerate, the number of fused particles per cluster, and the viscosity of the suspending fluid. The analysis is also extended to include the case of polydispersity of agglomerate sizes.  相似文献   

7.
Filled polymeric liquids often exhibit apparent yielding and shear thinning in steady shear flow. Yielding results from non-hydrodynamic particle—particle interactions, while shear thinning results from the non-Newtonian behavior of the polymer melt. A simple equation, based on the linear superposition of two relaxation mechanisms, is proposed to describe the viscosity of filled polymer melts over a wide range of shear rates and filler volume fraction.The viscosity is written as the sum of two generalized Newtonian liquid models. The resulting equation can describe a wide range of shear-thinning viscosity curves, and a hierarchy of equations is obtained by simplifying the general case. Some of the parameters in the equation can be related to the properties of the unfilled liquid and the solid volume fraction. One adjustable parameter, a yield stress, is necessary to describe the viscosity at low rates where non-hydrodynamic particle—particle interaction dominate. At high shear rates, where particle—particle interactions are dominated by interparticle hydrodynamics, no adjustable parameters are necessary. A single equation describes both the high and low shear rate regimes. Predictions of the equation closely fit published viscosity data of filled polymer melts. n power-law index - n 1,n 2 power-law index of first (second) term - shear rate - steady shear viscosity - 0 zero-shear rate viscosity - 0, 1, 0, 2 zero-shear rate viscosity of first (second) term - time constant - 1, 2 time constant of first (second) term - µ r relative viscosity of filled Newtonian liquid - 0 yield stress - ø solid volume fraction - ø m maximum solid volume fraction  相似文献   

8.
Suspensions consisting of particles of colloidal dimensions have been reported to form connected structures. When attractive forces act between particles in suspension they may flocculate and, depending on particle concentration, shear history and other parameters, flocs may build-up in a three-dimensional network which spans the suspension sample. In this paper a floc network model is introduced to interpret the elastic behavior of flocculated suspensions at small deformations. Elastic percolation concepts are used to explain the variation of the elastic modulus with concentration. Data taken from the suspension rheology literature, and new results with suspensions of magnetic -Fe2O3 and non-magnetic -Fe2O3 particles in mineral oil are interpreted with the model proposed.Non-zero elastic modulus appeared at threshold particle concentrations of about 0.7 vol.% and 0.4 vol.% of the magnetic and non-magnetic suspensions, respectively. The difference is attributed to the denser flocs formed by magnetic suspensions. The volume fraction of particles in the flocs was estimated from the threshold particle concentration by transforming this concentration into a critical volume concentration of flocs, and identifying this critical concentration with the theoretical percolation threshold of three-dimensional networks of different coordination numbers. The results obtained indicate that the flocs are low-density structures, in agreement with cryo-scanning electron micrographs. Above the critical concentration the dynamic elastic modulus G was found to follow a scaling law of the type G ( f - f c ) f , where f is the volume fraction of flocs in suspension, and f c is its threshold value. For magnetic suspensions the exponent f was found to rise from a low value of about 1.0 to a value of 2.26 as particle concentration was increased. For the non-magnetic a similar change in f was observed; f changed from 0.95 to 3.6. Two other flocculated suspension systems taken from the literature showed a similar change in exponent. This suggests the possibility of a change in the mechanism of stress transport in the suspension as concentration increases, i.e., from a floc-floc bond-bending force mechanism to a rigidity percolation mechanism.  相似文献   

9.
A variety of studies reported in the literature have established that initially well mixed suspensions subjected to non-homogeneous shear flows attain an anisotropic particulate structure. It has also been shown that non-homogeneous shearing causes suspensions of unimodal spheres to demix, i.e., gradients in solids concentration are formed. The objective of this study was to determine the effect of non-homogeneous shear flows on suspensions of bimodal particles, and specifically, to determine if the solids concentration gradients which develop are accompanied by size segregation of the coarse with respect to the fine fraction. We used the simplest and most direct methods to determine the relative solids concentrations: visual observation of tracer particles in transparent suspensions and physical separation of the coarse and fine solid fractions. Three different types of non-homogeneous shear flows were examined, and in each case the data support two main conclusions: 1) suspended particles migrate from regions of high shear rate to regions of low shear rate, and 2) the coarse fraction of particles migrates much faster than the fine fraction, leading to size segregation of initially well-mixed suspensions. While the former conclusion is consistent with other studies reported in the literature, to our knowledge this paper provides the first data supporting and, to a limited extent, quantifying the latter conclusion.  相似文献   

10.
The rheological behavior of polymethylmethacrylate (PMMA) particles suspensions in glycerine–water mixtures has been investigated by means of steady and dynamic rheometry in this work. The shear rheology of these suspensions demonstrates a strong shear thickening behavior. The variations of shear viscosity with the volume fraction and ratios of glycerine to water are discussed. The effect of volume fraction can be qualitatively explained using a clustering mechanism, which attributes the phenomena to the formation of temporary, hydrodynamic clusters. The influence of interactions between glycerine–water mixtures and PMMA particles on shear thickening is investigated by varying the ratio of glycerine to water. In addition, the reversible and thixotropic properties of suspensions of PMMA dispersed in glycerine–water (3:1) mixtures are also investigated, and the results demonstrate the excellent reversible and thixotropic properties of PMMA particle suspensions.  相似文献   

11.
Zusammenfassung Das Fließverhalten von Polymersuspensionen in verschiedenen Strömungsformen wird anhand von mit isotropen und anisotropen Partikeln (Glaskugeln bzw. Glasfasern) gefüllten hochmolekularen Schmelzen untersucht. Zur Anwendung kommen dabei sowohl lineare als auch verzweigte Polymere, nämlich Polyethylene mit hoher Dichte (HDPE) und mit niedriger Dichte (LDPE).Alle untersuchten Systeme zeigen in der Scherströmung im Rotationsrheometer bei Zugabe von Füllstoff eine Verringerung der elastischen Eigenschaften. Solches Verhalten ist für Suspensionen isotroper Teilchen zu erwarten, bei Fasersuspensionen wird jedoch gewöhnlich ein verstärktes Anwachsen der ersten Normalspannungsdifferenz mit zunehmender Füllung gefunden. Bei höheren Schergeschwindigkeiten (Messungen im Kapillarviskosimeter) wird die durch die Füllstoffe bewirkte Viskositätserhöhung zunehmend geringer, die Suspensionen verhalten sich also mit zunehmendem Füllgrad stärker scherentzähend. Das Einsetzen der für das lineare HDPE typischen Instabilitäten (stick-slip, Wandgleiten) läßt sich durch den Ersatz von (elastischem) Polymer durch (starre) Kugeln nicht beeinflussen, diese Form des Schmelzenbruchs setzt bei gleichen Schubspannungen ein und ist so wegen der höheren Viskosität der Suspension sogar zu niedrigeren Durchsätzen hin verschoben.Um die Lücke zwischen den Messungen im Rotations- und im Kapillarviskosimeter (niedrige bzw. hohe Schergeschwindigkeiten) zu schließen, wurden Experimente bei oszillatorischer Scherbeanspruchung durchgeführt. Die bekannte Cox-Merz-Beziehung vermag das Verhalten der ungefüllten Schmelzen zwar recht gut zu beschreiben, versagt jedoch bei den Suspensionen gerade im Bereich niedriger Schergeschwindigkeiten, ebenso wie andere vorgeschlagene Korrelationen zwischen dynamischen und stationären Kenngrößen.Zur Bestimmung des Materialverhaltens bei uniaxialer Dehnbeanspruchung wurde ein Rotationsrheometer in geeigneter Weise modifiziert, so daß für die verwendeten sehr hochviskosen Stoffsysteme eine Messung möglich wurde. Die verschiedenen reinen Schmelzen zeigen ein wenig unterschiedliches Dehnverhalten mit ausgeprägten Verfestigungserscheinungen. Eine stationäre Dehnviskosität konnte in keinem Fall gemessen werden. Die Zugabe von Glaskugeln ändert die Dehnviskosität nicht wesentlich, der Zusatz von Glasfasern jedoch bewirkt eine merkliche Erhöhung der instationären Dehnviskosität im Anlaufbereich.
The flow behaviour of suspensions is examined in different flow geometries using linear and branched high-molecular-weight polyethylene melts as suspension media containing isotropic (glass beads) and anisotropic (glass fibre) particles.In shear flow in a rotational rheometer, all suspensions show a decrease of the elastic properties with increasing filler content. While this behaviour has to be expected with suspensions of isotropic particles, fibre-filled polymer fluids usually show increasing normal stress differences with increasing fibre content. At higher shear rates (in a capillary viscometer) the particle-induced viscosity increase deminishes, hence the suspensions tend to be more shear thinning with increased filler content.The onset point of instabilities typically found with the linear HDPE is not shifted towards higher volumetric flow rates by replacement of elastic polymer by inelastic fillers as might be expected; on the contrary, the so-called stick-slip behaviour is initiated at constant values of shear stress and hence — because of the higher viscosity of the suspensions — at lower flow rates.Additionally, experiments were carried out with oscillating shear strain. Neither the well-known Cox-Merz relation nor similar relations, discussed in the literature, could properly correlate oscillatory and steady-state fluid behaviour of the suspensions, especially in the low shear rate range, whereas the former worked rather well for the unfilled melts.To allow for measurements of extensional properties, a rotational rheometer was slightly modified, thus being capable of determining the extensional viscosity of highly viscous polymeric materials. The pure melts showed only a slightly different behaviour with pronounced strain hardening. No stationary values of the Trouton viscosity could be obtained. While addition of glass beads was of little influence on material behaviour, addition of glass fibres showed remarkable increase of the extensional viscosity in the start-up region.
Erster Teil einer vom Fachbereich Chemietechnik der Universität Dortmund genehmigten Dissertation  相似文献   

12.
The rheological properties of dense silica in water suspensions (approx. 50% solids by volume) containing additions of metal oxides were examined. Metal oxides used were ferric, zinc and stannic. To prevent settling, testing was performed in a rheometer which was modified to provide for continual stirring of the materials. Relatively small oxide additions had the effect of thickening the mixtures and making them non-Newtonian. Different rate-limiting steps for flow were identified depending on the particular mixture, testing temperature and shear strain rate. Flow could be described using empirical equations which are identical to those often used to describe plastic flow in solid crystalline materials.  相似文献   

13.
This paper presents results on the rheological behaviour of suspensions of two kinds of TiO2 particles in two different polymer solutions. The particles differ in their hydrophilic or hydrophobic properties. The dispersing media are a solution of high molecular weight polyisobutylene in decalin and a solution of a low molecular weight polybutene in decalin. The concentrations of polymer are adjusted in order to get the same zero shear viscosity. The shear viscosity measurements display an apparent yield stress in some cases. The existence and the values of the yield stress depend on the volume fraction of solid particles and on the type of particles. The evolution of the intrinsic viscosity and of the maximum packing fraction vs the shear rate is interpreted in terms of evolution of the size and of the shape of aggregates of particles under shear. The effect of temperature on the development of the yield stress is also discussed. The results are completed by microscopic observations.  相似文献   

14.
Luo  Yimin  Lee  Yu-Fan  Dennis  Kimberly A.  Velez  Carlos  Brown  Scott C.  Furst  Eric M.  Wagner  Norman J. 《Rheologica Acta》2020,59(4):209-225

Dense colloidal suspensions are processed in a wide variety of industries. Challenges for pumping suspensions and slurries at high concentrations include shear thickening and dilation, which can have deleterious consequences. These systems are shear sensitive close to the jamming point, meaning that a significant increase in high shear viscosity can be observed with just a few percent change in volume fractions. Therefore, accurate and rapid determination of the jamming point can greatly aid formulation. Typically, conventional rheometry identifies the jamming point by a time-consuming process, whereby multiple flow curves of suspensions of different volume fraction are measured and extrapolated to the volume fraction where the viscosity diverges. We present an alternative approach for rapid, one-step, experimental determination of the jamming point for aqueous suspensions. The procedure monitors the shear stress under constant shear stress or shear rate as the sample is dewatered using immobilization cell rheometry, until the viscosity diverges. The method is validated by comparing the results of this work with conventional rheometry for a model suspension. Then it is applied to examine the effect of grafting a short-chain polymer to particles, comprising an industrial suspension of silica-coated titania. Polymeric coating of the particles increases the jamming concentration and mitigates shear thickening, qualitatively consistent with predictions from simulations.

A new method is designed to extract the jamming point of a suspension. The procedure monitors the effective viscosity under prescribed shear conditions as the suspension is dewatered using immobilization cell rheometry. The geometry moves down to accommodate solvent evaporation, until the viscosity diverges, and the jamming point is reached.

  相似文献   

15.
The pseudoplastic flow of suspensions, alumina or styrene-acrylamide copolymer particles in water or an aqueous solution of glycerin has been studied by the step-shear-rate method. The relation between the shear rate,D, and the shear stress,, in the step-shear-rate measurements, where the state of dispersion was considered to be constant, was expressed as = AD 1/2 +CD. The effective solid volume fraction,ø F, andA were dependent on the shear rate and expressed byø F =aD b andA = D . Combining the above relations, the steady flow curve was expressed by = D 1/2 + + 0 (1 – a D b/0.74)–1.85 D, where 0 is the viscosity of the medium.With an increase in solid volume fraction and a decreases in the absolute value of the-potential, the flow behavior of the suspensions changed from Newtonian ( = = b = 0), slightly pseudoplastic ( = b = 0), pseudoplastic ( = 0) to a Bingham-like behavior.The change in viscosity of the medium had an effect on the change in the effective volume fraction.  相似文献   

16.
The shear viscosity of clay-based coating colors containing latex and carboxymethyl cellulose (CMC) has been measured over a relatively large shearrate region. In the shear-rate range of 50–1500 s–1 the measurements were performed using a rotational viscometer and, at higher shear rates extending into the region 105 – 106 s–1, a high pressure capillary viscometer was employed. The viscosity of the clay colors increased with increasing CMC-concentration, but the influence of the CMC-content was less pronounced at higher shear rates. The apparent shear-thinning behavior of the investigated colors could, in part, be attributed to the shear-thinning of the corresponding polymer (CMC) solution constituting the liquid phase of the color, but the influence of another factor was also indicated. At low shear rates, the interaction between the color components can produce relatively high viscosity levels, but in the high shear rate region these interactions appear to be less important for the viscosity level. It is also of interest to note that the viscosity dependence on the solids content in the high shear-rate region could be described with reasonable accuracy using an empirical equation neglecting interactions between the color components.  相似文献   

17.
Résumé L'analyse du comportement rhéologique de sols d'acide polysilicique en solution aqueuse de concentration supérieure à 7 g 1–1 de silice en fonction du pH entre 6 et 11 et de la température entre 25 et 45 °C a permis de situer la gélification dans un domaine de pH compris entre 8 et 10. Ce processus prend une intensité maximale à 30°C. Le comportement rhéofluidifiant à bas gradients de cisaillement et antithixotrope donne naissance sur les rhéogrammes à un point d'inversion à pH = 9. L'ionisation des groupes silanols à la surface des particules colloïdales permet la réorganisation du milieu après cisaillement. Un état d'ionisation trop élevé est responsable d'un effet electro-répulsif à pH = 10. L'influence de la concentration et de la température sur ces processus est discutée.
The rheological behavior of polysilicic acid in aqueous solutions at higher concentrations than 7 g 1–1 of silice is studied for pH between 6 and 11 with temperature varying from 25° to 45°C. This study indicates that gelification takes place between pH 8 and 10. The process of gel formation attains the highest intensity at 30°C. The shear-thinning behavior at low shear rate gives rise to an inversion point at pH = 9 in shear stress—shear rate curves. The state of ionization at the surface of colloïdal silice particles after shear involve shear thickening observed at pH = 9. A high ionization degree causes an electrostatic repulsion at pH = 10. The concentration and temperature effects upon the organization of network are discussed.
  相似文献   

18.
Concentrated suspensions of charged latex particles of poly(styrene-butadiene) have been used as model systems to investigate the influence of surface charges on the rheology of colloidal suspensions. The suspensions were found to behave as elastic solids at small strains and to require a finite stress to flow. This was related to an ordered structure of the suspensions at rest, resulting from electrostatic and van der Waals forces. Important shear-thinning effects were observed as a consequence of structure rearrangements under shear. At a fixed shear rate, the steady-shear viscosity as a function of the ionic strength exhibits a minimum. Under oscillatory shear flow, the behavior of the concentrated suspensions was found to be non-linear above a very small strain amplitude. The non-linear output signal from dynamic experiments was analyzed using a fast Fourier transform algorithm. A maximum in the third harmonic intensity as a function of the strain amplitude was observed and the intensity of higher harmonics decreased with increasing ionic strength. The behavior of the suspensions could be adequately described using the structural model of Yziquel et al. (Yziquel F, Carreau PJ, Moan M, Tanguy PA (1999) Rheological modeling of concentrated colloidal suspensions. J Non-Newtonian Fluid Mech 86:133–155).  相似文献   

19.
We present analyses to provide a generalized rheological equation for suspensions and emulsions of non-Brownian particles. These multiparticle systems are subjected to a steady straining flow at low Reynolds number. We first consider the effect of a single deformable fluid particle on the ambient velocity and stress fields to constrain the rheological behavior of dilute mixtures. In the homogenization process, we introduce a first volume correction by considering a finite domain for the incompressible matrix. We then extend the solution for the rheology of concentrated system using an incremental differential method operating in a fixed and finite volume, where we account for the effective volume of particles through a crowding factor. This approach provides a self-consistent method to approximate hydrodynamic interactions between bubbles, droplets, or solid particles in concentrated systems. The resultant non-linear model predicts the relative viscosity over particle volume fractions ranging from dilute to the the random close packing in the limit of small deformation (capillary or Weissenberg numbers) for any viscosity ratio between the dispersed and continuous phases. The predictions from our model are tested against published datasets and other constitutive equations over different ranges of viscosity ratio, volume fraction, and shear rate. These comparisons show that our model, is in excellent agreement with published datasets. Moreover, comparisons with experimental data show that the model performs very well when extrapolated to high capillary numbers (C a?1). We also predict the existence of two dimensionless numbers; a critical viscosity ratio and critical capillary numbers that characterize transitions in the macroscopic rheological behavior of emulsions. Finally, we present a regime diagram in terms of the viscosity ratio and capillary number that constrains conditions where emulsions behave like Newtonian or Non-Newtonian fluids.  相似文献   

20.
It is shown that extended irreversible thermodynamics can be used to account for the shear rate and frequency dependences of several material functions like shear viscosity, first and second normal stress coefficients, dynamic viscosity and storage modulus. Comparison with experimental data on steady shearing and small oscillatory shearing flows is performed. A good agreement between the model and experiment is reached in a wide scale of variation of the shear rate and the frequency of oscillations. The relation between the present model which includes quadratic terms in the pressure tensor and the Giesekus model is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号