首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscosities of suspended particles in polymeric solutions depend upon dissolved polymer concentration, volume fraction of particles and shear rate. In this analysis of viscosity data, relative viscosity was defined as the ratio of suspension viscosity to solution viscosity at the same shear stress rather than shear rate. These relative viscosities reached asymptotic values at high shear stress for all concentrations of dissolved polymer and for all particle loadings. At a given particle loading, the asymptotic values of relative viscosity were nearly independent of the concentration of dissolved polymer. Realtive viscosities were correlated with volume fraction by the one-constant equation of Maron and Pierce.  相似文献   

2.
The influence of medium viscosity on the onset of shear thickening of silica dispersions is investigated with two different methods. In the first method, the sample temperature is varied over a narrow range for two different suspensions. For the first suspension, the stress at the onset of shear thickening, or the critical stress, was found to be independent of sample viscosity, and the shear viscosity scaled with Peclet number, as expected. The critical stress for the second suspension was not independent of sample viscosity, and the Peclet number scaling was only moderately successful. The differences were attributed to changes in particle interactions with temperature. In the second method, the molecular weight of an oligomeric silicone oil medium is varied. In principle, this method should maintain constant chemical interactions as medium viscosity varies; however the polymer is found to adsorb onto the silica surface and delay shear thickening to higher stresses with increasing molecular weight. The critical stress for the highest molecular weight systems, which is highly dependent on particle loading, overlays with an effective volume fraction based on the hydrodynamic diameter of the polymer-stabilized colloids. The results of both methods suggest that if all other properties of the dispersion are held constant, critical stress is independent of medium viscosity.  相似文献   

3.
We investigate a variety of different semidilute polymer solutions in shear and elongational flow. The shear flow is created in the cone-plate-geometry of a commercial rheometer. We use capillary thinning of a filament that is formed by a polymer solution in the Capillary Breakup Extensional Rheometer (CaBER) as an elongational flow. We compare the relaxation time measured in the CaBER with relaxation times based on the first normal stress difference and the zero shear polymer viscosity that we measure in our rheometer. All of these three measurable quantities depend on different fluid parameters—the viscosity of the solvent, the polymer concentration within the solution, and the molecular weight of the polymers—and on the shear rate (in the shear flow measurements). Nevertheless, we find that the first normal stress coefficient depends quadratically on the CaBER relaxation time. Several scaling laws are presented that could help to explain this empirical relation.  相似文献   

4.
The shear thickening observed in laminar Poiseuille flow for dilute solutions of polystyrene of high molecular weight in decalin is studied as a function of concentration, molecular weight and shear rate. The experiments show the existence of four invariants, i.e. two critical Deborah numbers, a critical viscosity ratio, and a critical hydrodynamic dissipated energy, in terms of which a mechanism of this shear thickening can be proposed. It involves a permanent deformation of the macro molecules above a critical shear.  相似文献   

5.
Although normal stress differences in liquids have conventionally been associated with polymers, aspects of rheological behavior in lubricated concentrated contacts suggest that normal stress difference may be significant in even low molecular weight liquids sheared under high pressure and high shear stress. A torsional flow rheogoniometer was constructed for use at high (300 MPa) pressure. Four typical liquid lubricants were investigated, including one polymer/mineral oil solution. Shear stress and N 2-N 2 are reported as functions of shear rate. The effect of pressure variation is reported for two liquids. Results are compared with predictive techniques and a molecular dynamics simulation. Simple low molecular weight lubricant base oils can generate measurable and significant normal stress differences when sheared at high shear stress.  相似文献   

6.
Oil well cement pastes and model silica suspensions demonstrate similar rheology: in oscillatory shear, beyond a critical stress, a sharp transition is ob- served between gel and liquid behaviour. In creep tests, an apparent yield stress and shear-thinning are followed by the appearance of shear thickening. The minimum viscosity measured in steady shear is close in value to the complex viscosity obtained from oscillatory measurements. The observations can be explained by the formation of liquid trapping aggregates whose compactness may be estimated by fitting the Tsenoglou model, and whose cohesion is reflected in the rigidity of the gel and in the critical strain (or stress) of gel dissolution. Substituting cement or silica particles by polymer redispersible powder causes a decrease of the storage modulus in the gel state and a lower viscosity, while leaving the general features of the flow curve unchanged. Decrease in material rigidity may be due to a weaker inter-particle attraction generated by the polymer presence. The decrease in viscosity is explained by a lessening of water entrapped within the aggregates, which now contain polymer particles which are less hydrophilic than either cement or silica.  相似文献   

7.
We present data and predictive models for the shear rheology of suspended zeolite particles in polymer solutions. It was found experimentally that suspensions of zeolite particles in polymer solutions have relative viscosities that dramatically exceed the Krieger–Dougherty predictions for hard sphere suspensions. Our investigations show that the major origin of this discrepancy is due to the selective absorption of solvent molecules from the suspending polymer solution into zeolite pores. The effect raises both the polymer concentration in the suspending medium and the particle volume fraction in the suspension. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are increased. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating a solvent absorption parameter, α, into the Krieger–Dougherty model. We experimentally determined the solvent absorption parameter by comparing viscosity data for suspensions of porous and nonporous MFI zeolite particles. Our results are in good agreement with the theoretical pore volume of MFI particles.  相似文献   

8.
Summary The rheological properties of vinylon fiber suspensions in polymer solutions were studied in steady shear flow. Shear viscosity, first normal-stress difference, yield stress, relative viscosity, and other properties were discussed. Three kinds of flexible vinylon fibers of uniform length and three kinds of polymer solutions as mediums which exhibited remarkable non-Newtonian behaviors were employed. The shear viscosity and relative viscosity ( r ) increased with the fiber content and the aspect ratio, and depended upon the shear rate. Shear rate dependence of r was found only in the low shear rate region. This result was different from that of vinylon fiber suspensions in Newtonian fluids. The first normal-stress difference increased at first slightly with increasing fiber content but rather decreased and showed lower values for high content suspensions than that of the medium. A yield stress could be determined by using a modified equation of Casson type. The flow properties of the fiber suspensions depended on the viscosity of the medium in the suspensions under consideration.With 16 figures and 1 table  相似文献   

9.
It is shown that in a truly bimodal coal-water slurry the hydrodynamic interactions between the coarse particles impose on the fine fraction a shear rate higher than that applied externally by the viscometer walls. A semi-empirical function of the coarse volume fraction is obtained for this correction factor to the applied shear rate. The derivation of this shear correction factor is based on lubrication concepts and introduces the maximum packing fraction,ø m, at which flow can take place.ø m is obtainable from a simple dry packing experiment. It is shown that the contribution of the coarse particles to the viscosity rise can be successfully described by a viscosity model employing the same concepts used to derive the shear correction factor. The bimodal model is applied in the high shear limit to polymodal coal slurries with a continuous particle size distribution. In the model, the contribution of the coarse particles to the viscosity rise is taken from separate viscosity measurements for the coarse coal particles, while the contribution to the viscosity of the fine coal particles is taken to be that given by the measured viscosity of colloidal suspensions of monomodal rigid spheres. It is shown that there is a ratio of coarse to fine fraction volumes in the continuous size distribution, corresponding to a specific separating particle size, for which the measured viscosities of the polymodal slurries match almost perfectly over the whole solids volume fraction range with the viscosity values obtained using the bimodal approach. The match is found to be relatively insensitive to the precise value of the separating particle size.  相似文献   

10.
The steady-shear viscosity, dynamic viscoelasticity, and sedimentation behavior were measured for silica suspensions dispersed in aqueous solutions of poly(ethylene oxide) (PEO). For suspensions prepared with polymer solutions in which the transient network is developed by entanglements, the viscosity at a given shear rate decreases, shows a minimum, and then increases with increasing particle concentration. Because the suspensions are sterically stabilized under the conditions where the particle surfaces are fully covered with by a thick layer of adsorbed polymer, the viscosity decrease can be attributed to the reduction of network density in solution. But under the low coverage conditions, the particles are flocculated by bridging and this leads to a viscosity increase with shear-thinning profiles. The polymer chains with high molecular weights form flexible bridges between particles. The stress-dependent curve of storage modulus measured by a stress amplitude sweep shows an increase prior to a drastic drop due to structural breakdown. The increase in elastic responses may arise from the restoring forces of extended bridges with high deformability. The effect of PEO on the rheological behavior of silica suspensions can be explained by a combination of concentration reduction of polymer in solution and flocculation by bridging.  相似文献   

11.
Mixtures of xanthan and guar gum in aqueous solution were studied in two flow situations: simple shear and porous media. In addition, solids transport in vertical annular flow of sand suspensions was explored. The zero shear rate viscosity of the solutions displayed a pronounced synergy: the viscosity of the mixture is higher than that of the polymer solutions in a wide range of relative concentrations of the two polymers, in agreement with previous literature. However, at relatively high shear rates, the viscosity approaches the value of the more viscous xanthan gum solutions at mass fractions of xanthan gum between 0.1 and 0.15, and the degree of synergy substantially decreases. Stress relaxation experiments in simple shear indicate that the polymer mixtures exhibit a well-defined yield stress after relaxation that is absent in solutions of pure polymers. In porous media flow experiments, a synergistic behavior mimicking the shear flow results was obtained for the polymer mixtures at low shear rates. However, at a critical shear rate, the apparent viscosity in porous media flows exceeds the shear viscosity due to the elongational nature of flow in the pores. The solids transport capacity in annular flows is well-represented by trends in shear viscosity and stress relaxation behavior. However, the lack of viscosity synergy at high shear rates limits the applicability of the mixtures as a way to improve solids suspension capacity in annular flows.  相似文献   

12.
Filled polymeric liquids often exhibit apparent yielding and shear thinning in steady shear flow. Yielding results from non-hydrodynamic particle—particle interactions, while shear thinning results from the non-Newtonian behavior of the polymer melt. A simple equation, based on the linear superposition of two relaxation mechanisms, is proposed to describe the viscosity of filled polymer melts over a wide range of shear rates and filler volume fraction.The viscosity is written as the sum of two generalized Newtonian liquid models. The resulting equation can describe a wide range of shear-thinning viscosity curves, and a hierarchy of equations is obtained by simplifying the general case. Some of the parameters in the equation can be related to the properties of the unfilled liquid and the solid volume fraction. One adjustable parameter, a yield stress, is necessary to describe the viscosity at low rates where non-hydrodynamic particle—particle interaction dominate. At high shear rates, where particle—particle interactions are dominated by interparticle hydrodynamics, no adjustable parameters are necessary. A single equation describes both the high and low shear rate regimes. Predictions of the equation closely fit published viscosity data of filled polymer melts. n power-law index - n 1,n 2 power-law index of first (second) term - shear rate - steady shear viscosity - 0 zero-shear rate viscosity - 0, 1, 0, 2 zero-shear rate viscosity of first (second) term - time constant - 1, 2 time constant of first (second) term - µ r relative viscosity of filled Newtonian liquid - 0 yield stress - ø solid volume fraction - ø m maximum solid volume fraction  相似文献   

13.
The rheological behavior of stable slurries is shown to be characterized by a bimodal model that represents a slurry as made up of a coarse fraction and a colloidal size fine fraction. According to the model, the two fractions behave independently of each other, and the non-Newtonian behavior of the viscosity is solely caused by the colloidal fraction, while the coarse fraction increases the viscosity level through hydrodynamic interactions. Data from experiments run with colloidal coal particles of about 2–3 µm average size dispersed in water show the viscosity of these colloidal suspensions to exhibit a highly shearrate-dependent behavior and, in the high shear limit, to match very closely the viscosity of suspensions of uniform size rigid spheres although the coal volume fraction must be determined semi-empirically. Different amounts of coarse coal particles are added to the colloidal suspension and the viscosity of the truly bimodal slurries measured as a function of shear rate. In agreement with the bimodal model, the measured shear viscosities show the coarse fraction to behave independently of the colloidal fraction and its contribution to the viscosity rise to be independent of the shear rate. It is shown that the shear rate exerted on the colloidal fraction is higher than that applied by the viscometer as a result of hydrodynamic interactions between the coarse particles, and that it is this effective higher shear rate which is necessary to apply in the correlations. For determining the coal volume fraction a relatively simple and quite accurate measurement technique is developed for determining the density and void fraction of coarse porous particles; the technique directly relates volume fraction to mass fraction.  相似文献   

14.
A quasi-static asymptotic analysis is employed to investigate the elastic effects of fluids on the shear viscosity of highly concentrated suspensions at low and high shear rates. First a brief discussion is presented on the difference between a quasi-static analysis and the periodic-dynamic approach. The critical point is based on the different order-of-contact time between particles. By considering the motions between a particle withN near contact point particles in a two-dimensional “cell” structure and incorporating the concept of shear-dependent maximum packing fraction reveals the structural evolution of the suspension under shear and a newly asymptotic framework is devised. In order to separate the influence of different elastic mechanisms, the second-order Rivlin-Ericksen fluid assumption for describing normal-stress coefficients at low shear rates and Harnoy's constitutive equation for accounting for the stress relaxation mechanism at high shear rates are employed. The derived formulation shows that the relative shear viscosity is characterized by a recoverable shear strain,S R at low shear rates if the second normal-stress difference can be neglected, and Deborah number,De, at high shear rates. The predicted values of the viscosities increase withS R , but decrease withDe. The role ofS R in the matrix is more pronounced than that ofDe. These tendencies are significant when the maximum packing fraction is considered to be shear-dependent. The results are consistent with that of Frankel and Acrivos in the case of a Newtonian suspension, except for when the different divergent threshhold is given as [1 ? (Φ/Φ m )1/2] ? 1.  相似文献   

15.
 The elastic properties of model suspensions with spherical monodisperse hydrophilic glass spheres that were dispersed in a Newtonian liquid were determined in creep and creep recovery measurements in shear with a magnetic bearing torsional creep rheometer. The creep and creep recovery measurements were performed depending on the applied level of shear stresses ranging from 0.19 Pa to 200 Pa. Since the recoverable creep compliances of the chosen suspending medium (i.e. a low molecular weight polyisobutylene) were far below the lower limit of the resolution of the creep rheometer it can be considered to behave as purely viscous. By applying a large shear stress in the creep tests the investigated suspensions with a volume fraction of Φ t =0.35 behave as Newtonian liquids, too. For these suspensions no significant recoverable creep compliances could be detected, as well. In contrast to the Newtonian state of suspensions at high shear stresses, where a shear induced ordering of the particles can be expected, a non-Newtonian behaviour arises by applying a very low shear stress in the creep test. In this state large recoverable creep compliances were detected for the suspensions. The magnitude of the recoverable creep compliances of the suspensions exceeded the largest creep compliances of polymer melts that are reported in the literature by more than two decades. From the results obtained by creep recovery measurements with a magnetic bearing torsional creep rheometer it can clearly be concluded that the particle structure present in the chosen model suspension gives rise to a pronounced elasticity. Received: 21 November 2000 Accepted: 12 July 2001  相似文献   

16.
We study the onset of a yield stress in a polymer microgel dispersion using a combination of particle-tracking microrheology and shear rheometry. On the bulk scale, the dispersion changes from a predominantly viscous fluid to a stiff elastic gel as the concentration of the microgel particles increases. On the microscopic scale, the tracer particles see two distinct microrheological environments over a range of concentrations—one being primarily viscous, the other primarily elastic. The fraction of the material that is elastic on the microscale increases from zero to one as the concentration increases. Our results indicate that the yield stress appears as the result of jamming of the microgel particles, and we infer a model for the small-scale structure and interactions within the dispersion and their relationship to the bulk viscoelastic properties.  相似文献   

17.
A viscoelastic plastic model for suspension of small particles in polymer melts has been developed. In this model, the total stress is assumed to be the sum of stress in the polymer matrix and the filler network. A nonlinear viscoelastic model along with a yield criterion were used to represent the stresses in the polymer matrix and the filler network, respectively. The yield function is defined in terms of differential equations with an internal parameter. The internal parameter models the evolution of structure changes during floc rupture and restoration. The theoretical results were obtained for steady and oscillatory shear flow and compared with experimental data for particle filled thermoplastic melt. The experimental data included the steady state shear strress over a wide range of shear rates, the transient stress in a start up shear flow, stress relaxation after cessation of a steady state shear flow, the step shear and the oscillatory shear flow at various amplitudes.  相似文献   

18.
Mineral slurries may be dewatered to the point that they manifest non-Newtonian behavior. Many such slurries exhibit both thixotropic and hysteric behavior in their rheology, which has important implications for managing their deposition in tailings impoundments. This paper characterizes the rheology of a mineral slurry with relatively high clay content, which is treated with a high molecular weight anionic polymer to induce flocculation. The rheology exhibits viscosity bifurcation behavior similar to pure clay, including shear history-dependent apparent yield stress values. Rheometry results are presented including stress growth, controlled stress tests, and oscillatory rheometry, all using a vane fixture. The measured rheology is modeled using a previously published viscosity bifurcation model that accounts for hysteresis in the apparent yield stress. The rheology results are used semi-quantitatively to explain deposition rate-dependent behavior seen in flume tests. The geometry of tailings in flume tests with relatively slow deposition is affected by the presence of deposited tailings that have come to rest sufficiently to manifest the yield stress of initially fully structured material, rather than the lower value yield stress that characterizes when the material first comes to a stop. This full recovery of the yield stress seems to be particularly important to managing surface deposition, as zones of tailings that have stopped moving substantially steepen the slope of deposits near the deposition point.  相似文献   

19.
In this work, drop coalescence of polymer blends under shear flow in a parallel flow apparatus was investigated by optical sectioning microscopy. In each experiment, shear rate was set at values low enough to avoid any break-up phenomena. The time evolution of the drop size distribution was determined by motorized sample scanning and iterative acquisition of stacks of images along sample depth. Drop size and location in the acquired images was found by automated image analysis techniques. A systematic experimental campaign to investigate the effects of shear rate (in the range 0.1–0.5 s−1), volume fraction (2.5–10%), and viscosity of the two phases (3–63 Pa s) at different viscosity ratio (0.1–2.3) was carried out. By comparing data from different experiments, it was found that at any strain value, the average drop size decreases monotonically with the shear stress, calculated as the product of shear rate and matrix viscosity. Furthermore, the coalescence rate slowed down with increasing viscosity ratio. Overall, these results provide an extensive set of data, which can be used as a benchmark for modeling shear-induced coalescence in polymer blends.Paper presented at the Annual Meeting of the European Society of Rheology, Grenoble, April 2005.  相似文献   

20.
In this research experiments were performed to examine the hydrodynamic diffusion of spherical particles in a highly filled suspension. The suspension consisted of nearly monodisperse polymethylmethacrylate spheres in a density matched polymer solution. The polymer solution was prepared by dissolving 0–700 ppm of polyacrylamide in a mixture of ethyleneglycol and glycerine. The polymer solution did not show appreciable shear thinning. The particle loading was varied from 30 to 55%. The hydrodynamic diffusivity was estimated by measuring the time-dependent viscosity when the suspension was subjected to a circular Couette flow with an air bubble trapped under the rotor of the Couette apparatus. The results show that the dimensionless diffusivity (D/γ˙a 2) of particles in polymer solution is not proportional to shear rate (γ˙), as in the case of a Newtonian fluid, but that it decreases with increasing shear rate. The diffusivity also decreases with increasing polymer concentration. It is suggested that the elongational thickening behaviour and the increased lubrication force due to the first normal stress difference may be responsible for the reduction of diffusivity in the polymer solution. Received: 18 January 2000 Accepted: 6 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号