首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
提出用增压消解法消解硅藻土样品可使其所含的铌、钽、锆、铪等高场强元素溶解,从而达到所测定的26种微量元素完全溶解。操作时取样0.10g,置于消解罐的聚四氟乙烯(PTFE)内罐中,加少量水湿润样品,然后加入硝酸2 mL和氢氟酸5 mL,将消解罐密闭盖紧,置于保温185℃的烘箱中消解24h后,冷却,取出内罐,加入硝酸1mL,在电热板上蒸发至近干,重复3次加入硝酸并蒸干,以驱尽氢氟酸。然后于残渣中加入HCl-HNO_3-H_2O(体积比为3∶1∶4)混合酸5mL,将此内罐回置于外罐中,加盖密闭,再置于控温在185℃烘箱中消解8h,冷却后取出内罐,将其中溶液定容至25.0mL。分取此溶液5.0mL,加水定容至25mL。此溶液作为试溶在选定的仪器工作条件下进行电感耦合等离子体质谱分析。测得各元素的质量浓度在一定范围内与所测得的响应值与内标响应值的比值呈线性关系。各元素的检出限(3s)为0.003~0.2μg·g~(-1)。在制作标准曲线及样品分析时,均在最终的测试溶液中加入~(103)Rh(10μg·L~(-1))作为内标。用本方法分析了国家标准物质,所得测定值与其认定值相符。各测定值的相对标准偏差(n=8)为1.3%~5.6%。对我国3个主要矿区的硅藻土样品进行分析,并绘制了球粒陨石归一化的稀土配分曲线图,发现3种样品都表现为轻稀土含量高于重稀土,都具有比较平滑的配分曲线,但存在铕的负异常。这些规律与文献的报道一致。  相似文献   

2.
提出了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定有机肥料中As、Cd、Co、Cr、Ni、Pb、Sb、Tl、V等9种有毒有害元素含量的方法。取0.10 g有机肥料样品于聚四氟乙烯微波消解罐中,以2.5 mL盐酸、7.5 mL硝酸和2.0 mL氢氟酸为混合酸进行微波消解。消解结束后,于140℃赶酸,然后加入1.0 mL 50%(体积分数)硝酸溶液,再用水定容至50 mL,摇匀,过滤,取滤液待测,在线加入混合内标溶液。结果表明:9种元素标准曲线的线性范围均为2~100μg·L-1,方法检出限(3s)为0.59~66.75μg·kg-1;按照标准加入法对典型有机肥料样品进行回收试验,9种元素测定值的相对标准偏差(n=7)为2.0%~3.5%,回收率为81.5%~112%。  相似文献   

3.
用电感耦合等离子体原子发射光谱法测定了生物样品中13种元素(铝、钡、钾、钠、钙镁、锰、铁、锶、钛、磷、硫、硼),并建立了等离子体的稳健状态(高频功率1 150 W,载气压力1.92×105Pa),生物样品用浓硝酸与浓盐酸(3+1)的混合酸加压消解.为使样品溶解完全(特别对铝、钡及钛从样品中完全溶出)加入氢氟酸1~2滴(约0.1 mL).经试验,样品溶液中硝酸-盐酸混合酸以10份溶液中占1份(体积比)为宜,例如用硝酸-盐酸混合酸2.5 mL溶解0.5 g试样后,将溶液用水定容为25 mL,提出选用一种生物标准物质(GBW 07602)与样品同时操作后制作校正曲线为验证所提出方法的可行性,按方法分析了几种生物样品的标准物质(GBW 10014,GBW 10015GBW 10046,GBW 07604等),所测得各元素的含量与证书值一致.  相似文献   

4.
张颖 《理化检验(化学分册)》2008,44(11):1097-1098,1102
1.000 g试样置于PTFE消解罐中,加入氢氟酸2 mL,在120℃和大于138 kPa的压力下于MARS 5微渡消解系统中消解20 min,所得溶液稀释至100 mL,供电感耦合等离子体原子发射光谱测定用.采用基体匹配法,即在制作校正曲线的各试验点中加入一定量的基体元素铌,消除了基体效应.对各元素分析谱线的选择和背景校正等对测定有影响的因素也进行试验并提出了解决方法.分别对方法的回收率、精密度及检出限也进行了试验,测得回收率在90%~120%之间,相对标准偏差(n=6)在1.0%-10.0%之间,检出限(3σ)在1.3-42.0ug·L-1之间.  相似文献   

5.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定铝土矿中锂、铬、铜、铁、钛、钾、钠、钙、镁、铅、锌等11种金属元素含量的方法。将铝土矿粉碎、研磨和干燥后,取0.1 g样品,加入3 mL硫酸、1 mL硝酸、2 mL氢氟酸和3 mL盐酸,按升温程序微波消解样品,加40 g·L~(-1)硼酸溶液10 mL,继续在120℃下消解10 min,使消解液变澄清。冷却后取出,180℃加热至近干,用1%(体积分数)硝酸溶液稀释,按照ICP-MS条件测定。通过用10 g·L~(-1)铝基体溶液配制混合标准溶液系列并加入内标元素Sc、Ge、Bi的方法来消除基体干扰,选择合适的待测元素同位素的方法来消除谱线重叠干扰。结果显示:11种元素的质量浓度均在一定范围内与其对应的响应值与内标元素响应值的比值呈线性关系,检出限(3s)为0.011~1.400 mg·kg~(-1)。对实际样品进行加标回收试验,测定值为0.13~72.21 mg·L~(-1),测定值的相对标准偏差(n=6)为0.69%~2.6%,回收率为94.0%~106%;此方法用于分析3种铝土矿成分分析标准物质GBW 07177、GBW 07179、GBW 07180,所得测定值均在认定值要求的范围内。  相似文献   

6.
锰矿样品在密闭的消解罐中用盐酸、硝酸、过氧化氢及氢氟酸在微波消解仪中进行消解,所得溶液移入聚四氟乙烯容量瓶中,加水定容至100mL供电感耦合等离子体原子发射光谱法分析用。此方法中不采用加入硼酸络合过剩的氢氟酸,以避免因加入硼酸而引起的干扰。为抵消基体干扰,在制备标准曲线时于各试液中加入一定量的锰(Ⅱ)溶液。选择测定铝、镁及磷的分析谱线依次为396.152,280.270,185.942nm。应用此方法分析了2件锰矿标准物质,测得上述3种元素的测定结果与认定值相符,测定值的相对标准偏差(n=11)在0.63%~1.18%之间。  相似文献   

7.
测定了6种不同矿样中的钼含量。取矿样样品(0.200 0~0.500 0g)在聚四氟乙烯烧杯中,先加入氢氟酸5mL和硝酸5mL,于280℃加热蒸干,再加硫酸5mL,于330℃加热至冒白烟。冷却,将溶液和沉淀一起移至50mL容量瓶中,加水至刻度,摇匀。分取其上清液,按硫氰酸盐光度法测定其钼含量。钼的线性范围为0.02~4.0mg·L-1,方法的检出限(3s)为0.12mg·L-1。应用所提出方法测定了4种矿石标准物质(GBW 07238,GBW 07241,GBW 07282,GBW07164)中钼的含量,测定值与认定值相符,测定值的相对标准偏差(n=11)在2.6%~6.2%之间。  相似文献   

8.
取水产品样品0.500 0 g,加入硝酸5 mL、水2 mL、30%(质量分数)过氧化氢溶液1 mL,按微波消解程序进行消解,将消解液于100℃蒸发至1~2 mL,用水定容至25 mL。采用电感耦合等离子体质谱法测定上述溶液中铬、铜、锌、砷、镉、铅的含量。各元素测定值的相对标准偏差(n=6)在1.2%~5.9%之间,回收率在96.6%~102%之间。按上述方法分析标准物质GBW 10023、GBW 10024、GBW 10050,FAPAS质控基准物质TET012RM以及质控样品T07225QC,各元素测定值与认定值一致。  相似文献   

9.
取水产品样品0.500 0 g,加入硝酸5 mL、水2 mL、30%(质量分数)过氧化氢溶液1 mL,按微波消解程序进行消解,将消解液于100℃蒸发至1~2 mL,用水定容至25 mL。采用电感耦合等离子体质谱法测定上述溶液中铬、铜、锌、砷、镉、铅的含量。各元素测定值的相对标准偏差(n=6)在1.2%~5.9%之间,回收率在96.6%~102%之间。按上述方法分析标准物质GBW 10023、GBW 10024、GBW 10050,FAPAS质控基准物质TET012RM以及质控样品T07225QC,各元素测定值与认定值一致。  相似文献   

10.
将采集的污泥样品晾干并碾碎至粒径为150μm的细粉,置于105℃温度条件下烘干4 h,称取烘干的样品,用硝酸-氢氟酸-高氯酸混合酸消解后,将溶液定容至250 mL容量瓶中。分取5.00 mL试液置于100 mL容量瓶中用硝酸(0.2+99.8)溶液定容至100 mL,用火焰原子吸收光谱法按所选仪器工作条件测定其中4种重金属元素锰、铜、镉及铅的含量。方法的检出限(2s)分别为0.006 5(锰),0.001 6(铜),0.001 9(镉)及0.020 7(铅)mg.L-1。用标准加入法做回收试验,测得回收率在92.3%~98.6%之间。  相似文献   

11.
提出了用微波消解-电感耦合等离子体原子发射光谱法测定河流和湖泊沉积物中11种重金属元素(银、镉、钴、铬、铜、锰、镍、铅、锑、钒和锌)的方法。沉积物样品(0.100 0~0.500 0g)加入硝酸6mL,盐酸2mL,氢氟酸2mL,按程序升温微波消解,将消解液于130~140℃蒸发至近干,加水溶解残渣并定容至50mL。此溶液供电感耦合等离子体原子发射光谱法同时测定11种重金属元素含量,并选择了合适的分析谱线。光谱干扰运用背景扣除予以校准。测得各元素的检出限(3s)为0.20~2.00mg·kg~(-1)。以沉积物样品为基体,按标准加入法进行回收试验,测得回收率在81.6%~112%之间,相对标准偏差(n=6)均小于6.0%。按上述方法测定CRM(GBW 07360,GBW 07307a),测定值与认定值一致。  相似文献   

12.
采用高压密闭酸溶溶解锑矿石,用电感耦合等离子体原子发射光谱法(ICP-AES)测定锑矿石中As、Sb、Al、Fe、Ca、Mg、K、Na、Ti、Mn等10种元素的含量。在装有0.10 g样品的消解内罐中依次加入体积比为3∶1的盐酸-硝酸混合溶液1 mL和氢氟酸2 mL,在150℃烘箱中保温24 h。取出内罐,在电热板上以150℃蒸发至近干。加入体积比为3∶1的盐酸-硝酸混合溶液0.5 mL再次蒸发至干,此步骤重复一次。加入体积比为1∶3∶4的硝酸-盐酸-水混合溶液5 mL,在烘箱中130℃加热3 h。用体积比为1∶3∶36的硝酸-盐酸-水混合溶液定容至100 mL,按照优化的ICP-AES仪器工作条件测定。结果显示:10种元素的质量浓度均在一定范围内与其对应光谱响应值呈线性关系,检出限(3s)为1.98~77.20μg·g~(-1);按照试验方法分析4种标准物质,所得相对误差为-2.8%~10%;对2种标准物质平行测定12次,测定值的相对标准偏差(RSD)为0.25%~6.6%。  相似文献   

13.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)测定土壤样品中16种稀土元素的分析方法。样品经硝酸-过氧化氢-氢氟酸消解,直接用ICP-MS测定试液中16种稀土元素。研究了ng/mL水平的Ba氧化物及轻稀土氧化物对重稀土元素的干扰程度,其中Ba和Pr的氧化物干扰较严重,不过此类干扰可通过Method编辑干扰方程得以校正。测定土壤标准物质GBW07446及GBW07451,结果与标准物质证书值一致。  相似文献   

14.
工业纯铁样品用盐酸、硝酸、氢氟酸微波消解,消解液用水定容至100.0mL,采用电感耦合等离子体质谱法测定上述溶液中硼、镁、钙、钛、铬、镍、铜、锆、铌、锡、锑、铅、铋等13种元素的含量。采用内标法定量,13种元素的线性范围均为0.000 10%~0.015 00%,检出限(3s)为0.24~0.66μg·L^-1。用标准加入法做方法的回收试验,测得回收率为84.0%~106%。方法应用于纯铁标准样品(GBW 01401b、GBW 01402g、SRM 2167、YSBC 11247-2007)的分析,测定值与认定值相符,测定值的相对标准偏差(n=6)为0.80%~9.6%。  相似文献   

15.
采用微波消解样品-电感耦合等离子体原子发射光谱法同时测定铅精矿中主体元素铅及有毒有害元素砷、镉、汞的含量。0.20g试样置于消解罐中,先后加入硝酸9mL、盐酸3mL、氟硼酸2mL及过氧化氢2.5mL,密闭罐盖按设定的微波消解程序进行消解。试验选择铅、砷、镉和汞的分析线分别为220.351,189.042,228.802,184.950nm以消除基体干扰。铅、砷、镉、汞的检出限分别为16.0,2.2,0.4,0.8μg.g-1。方法用于铅精矿标准样品(GBW 07617)和铅精矿实际样品分析,此方法的测定值与认定值及原子吸收光谱法或原子荧光光谱法的测定值相一致。方法的相对标准偏差(n=10)在0.15%~3.9%之间。  相似文献   

16.
采用微波消解样品-电感耦合等离子体原子发射光谱法同时测定镍精矿样品中铝、钙、钴、铬、铜、锰、镁、镍、铅、锌等10种金属元素的含量。0.200 0g试样置于消解罐中,先后加入盐酸2mL、硝酸6mL及氢氟酸1mL,密闭罐盖按设定的微波消解程序进行消解。试验选择铝、钙、钴、铬、铜、镁、锰、铅、锌和镍的分析线分别为308.215,317.933,228.616,267.716,324.745,279.079,257.610,220.353,206.200,231.604nm,配制工作曲线时采用基体匹配的方法消除基体干扰。方法用于镍钴矿标准样品(GBW 07283)和镍精矿实际样品的分析,此方法的测定值与认定值及国标方法的测定值相一致。方法的回收率在95.8%~103.1%之间,相对标准偏差(n=6)均小于4.5%。  相似文献   

17.
提出了高压密闭消解-氢化物发生原子荧光光谱法测定农作物中硒含量的方法。粮食类样品(干样)去除杂物后,用水洗净,于60℃烘干;蔬菜类样品(鲜样)用水洗净,晾干,取可食用部分,制成匀浆。取上述样品0.5000 g置于高压密闭聚四氟乙烯(PTFE)内罐中,加入8 mL硝酸和2 mL 30%(质量分数)过氧化氢溶液,混匀过夜,于150℃密封消解4 h。冷却至室温后,于150℃赶酸至约1 mL,加入50%(体积分数)盐酸溶液5 mL,于150℃继续保持加热至溶液无色清亮并伴有白烟冒出。冷却后转移至10 mL容量瓶中,加入100 g·L^(-1)铁氰化钾溶液2.5 mL,用水定容。所得溶液在硒高性能空心阴极灯电流为80 mA,载气流量为300 mL·min^(-1),屏蔽气流量为700 mL·min^(-1)的条件下,采用氢化物发生原子荧光光谱法测定其中硒的含量。结果表明,硒的质量浓度在100μg·L^(-1)以内与对应的荧光强度呈线性关系,检出限(3s)为0.001 mg·kg^(-1)。方法用于国家标准物质分析,测定值的相对标准偏差(n=12)为2.3%~7.1%,相对误差为-6.7%~9.7%。方法还用于实际样品分析,所得测定结果与国家标准GB 5009.93-2017基本一致。  相似文献   

18.
样品(0.400 0 g)置于50 mL样品管中,加入盐酸-硝酸-水(3+1+4)混合液10 mL,饱和氟化氢铵溶液1.0 mL,经石墨消解仪斜坡升温进行消解。消解液冷却10 min,用水定容至50 mL。分取10.0 mL,用水稀释至20 mL,所得溶液采用电感耦合等离子体质谱法测定其中银及铂族元素(钌、铑、钯、铱、铂、金)的含量。以标准加入法补偿基体效应制作标准曲线。在质谱分析中采用标准模式。7种元素的检出限(3s)在0.01~0.80μg·L~(-1)之间。按标准加入法进行回收试验,回收率在94.0%~105%之间,相对标准偏差(n=11)在0.70%~2.1%之间。按上述方法分析铜冶炼渣尾矿样品,结果与石墨炉原子吸收光谱法测定结果基本一致。  相似文献   

19.
建立了四酸微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤中6种重金属元素的方法。取0.10~0.20 g土壤样品用少量水润湿,加入6 mL硝酸、2 mL盐酸、1 mL氢氟酸和1 mL 30%(质量分数,下同)过氧化氢溶液,静置15 min使其充分反应,置于微波消解仪中按升温程序消解。消解液置于电热板上以140℃加热至溶液近干,用1%(体积分数)硝酸溶液溶解残渣并将其定容至25 mL,按优化的ICP-AES条件分析。所选的Pb、As、Ni、Cu、Zn、Cr的分析谱线分别为220.353,189.042,231.604,327.396,213.856,267.716 nm。结果显示:6种元素的质量浓度分别在1.00 mg·L~(-1)(Pb、As、Cu、Ni)内和2.00 mg·L~(-1)(Cr、Zn)内与其对应的光谱响应值呈线性关系,检出限(3s)为0.29~5.76μg·L~(-1);对标准样品进行6次重复测定,测定值的相对标准偏差为0.60%~2.6%,测定值与认定值基本一致。  相似文献   

20.
建立微波消解-电感耦合等离子体发射光谱(ICP-OES)法快速测定盐渍土中二氧化硅含量的方法。称取0.100 0 g土壤样品,加入1 mL浓盐酸,1 mL浓硝酸和2 mL氢氟酸,微波消解120 min,最高消解温度为180℃,样品溶液采用ICP-OES法进行测定,以标准工作曲线法定量。硅元素的质量浓度在0~100 mg/L范围内与光谱强度线性关系良好,相关系数为0.999 8,二氧化硅的检出限为0.045 mg/kg。利用该方法对3个土壤样品进行测定,二氧化硅测定结果的相对标准偏差为0.354%~0.608%(n=6),对土壤成分分析标准物质GBW 07408、GBW 07447和GBW 07452进行测定,测定值均在标准值不确定度范围内。该方法可快速测定盐渍土中二氧化硅含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号