首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a comparison of charge transport and recombination dynamics in dye-sensitized solar cells (DSSCs) employing nanocrystalline TiO(2) and SnO(2) films and address the impact of these dynamics upon photovoltaic device efficiency. Transient photovoltage studies of electron transport in the metal oxide film are correlated with transient absorption studies of electron recombination with both oxidized sensitizer dyes and the redox couple. For all three processes, the dynamics are observed to be 2-3 orders of magnitude faster for the SnO(2) electrode. The origins of these faster dynamics are addressed by studies correlating the electron recombination dynamics to dye cations with chronoamperometric studies of film electron density. These studies indicate that the faster recombination dynamics for the SnO(2) electrodes result both from a 100-fold higher electron diffusion constant at matched electron densities, consistent with a lower trap density for this metal oxide relative to TiO(2), and from a 300 mV positive shift of the SnO(2) conduction band/trap states density of states relative to TiO(2). The faster recombination to the redox couple results in an increased dark current for DSSCs employing SnO(2) films, limiting the device open-circuit voltage. The faster recombination dynamics to the dye cation result in a significant reduction in the efficiency of regeneration of the dye ground state by the redox couple, as confirmed by transient absorption studies of this reaction, and in a loss of device short-circuit current and fill factor. The importance of this loss pathway was confirmed by nonideal diode equation analyses of device current-voltage data. The addition of MgO blocking layers is shown to be effective at reducing recombination losses to the redox electrolyte but is found to be unable to retard recombination dynamics to the dye cation sufficiently to allow efficient dye regeneration without resulting in concomitant losses of electron injection efficiency. We conclude that such a large acceleration of electron dynamics within the metal oxide films of DSSCs may in general be detrimental to device efficiency due to the limited rate of dye regeneration by the redox couple and discuss the implications of this conclusion for strategies to optimize device performance.  相似文献   

2.
The effects of deoxycholic acid (DCA) and 4-tert-butylpyridine (TBP) as additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells were investigated. DCA coadsorption improved both the photocurrent and photovoltage of the solar cells, even though it decreased the amount of dye adsorbed on the TiO2 electrode. The improved photocurrent may arise from suppression of the deactivation of the excited state via quenching processes between dye molecules or a more negative LUMO level of the dye in the presence of DCA, resulting in a high electron-injection yield from the dye into TiO2. The increased photovoltage is probably due to suppression of recombination between the injected electrons and I3- ions on the TiO2 surface (dark current). The addition of TBP to the electrolyte also markedly improved the photovoltage and fill factor of the solar cell, and consequently, the total conversion efficiency increased from 3.6% to 7.5%. FT-IR spectroscopy indicated that a large amount of TBP was adsorbed on the dye-coated TiO2 films in the presence of Li cations. This result suggests that TBP, like DCA, suppressed the dark current on the TiO2 surface, which resulted in the improved photovoltage.  相似文献   

3.
The interaction of N(2) and O(2) with extraframework cations of zeolite frameworks was studied by DFT, using the B3LYP method. The extraframework cation sites located in the vicinity of the double six-member rings (D6R) of FAU zeolites (SI, SI', SIII') were considered and clusters with composition (M(n)(+))(2/)(n)()H(12)Si(10)Al(2)O(18), M = Li(+), Na(+), K(+), Ca(2+), were selected to represent the adsorption centers. The cation sites SII in the center of single six-membered rings (S6R) were modeled by [M(I)H(12)Si(4)Al(2)O(6)](-) and M(II)H(12)Si(4)Al(2)O(6) clusters. The adsorption energy of N(2) and O(2) is the highest for Li(+) cations at the SIII' cation sites, while for the SI' and SII sites the adsorption energies decrease in the order Ca(2+) > Na(+) > Li(+). The calculated small N(2) adsorption energy for Li(+) cations at SII sites suggests that these sites do not take part in the sorption process in agreement with results of NMR studies and Monte Carlo simulations. The N(2) adsorption complexes with the extraframework cations are linear, while those of O(2) are bent regardless of the extraframework cation location. The SIII' cation sites are the most favorable ones with respect to N(2) adsorption capacity and N(2)/O(2) selectivity; the SII sites are less selective and the SI sites are not accessible.  相似文献   

4.
Performance of dye-sensitized solar cells (DSCs) was investigated depending on the compositions of the electrolyte, i.e., the electrolyte with a different cation such as Li(+), tetra-n-butylammonium (TBA(+)), or 1,2-dimethyl-3-propylimidazolium (DMPIm(+)) in various concentrations, with and without 4-tert-butylpyridine (tBP), and with various concentrations of the I(-)/I(3)(-) redox couple. Current-voltage characteristics, electron lifetime, and electron diffusion coefficient were measured to clarify the effects of the constituents in the electrolyte on the charge recombination kinetics in the DSCs. Shorter lifetimes were found for the DSCs employing adsorptive cations of Li(+) and DMPIm(+) than for a less-adsorptive cation of TBA(+). On the other hand, the lifetimes were not influenced by the concentrations of the cations in the solutions. Under light irradiation, open-circuit voltages of DSCs decreased in the order of TBA(+)> DMPIm(+) > Li(+), and also decreased with the increase of [Li(+)]. The decreases of open-circuit voltage (V(oc)) were attributed to the positive shift of the TiO(2) conduction band potential (CBP) by the surface adsorption of DMPIm(+) and Li(+). These results suggest that the difference of the free energies between that of the electrons in the TiO(2) and of I(3)(-) has little influence on the electron lifetimes in the DSCs. The shorter lifetime with the adsorptive cations was interpreted with the thickness of the electrical double layer formed by the cations, and the concentration of I(3)(-) in the layer, i.e., TBA(+) formed thicker double layer resulting in lower concentration of I(3)(-) on the surface of the TiO(2). The addition of 4-tert-butylpyridine (tBP) in the presence of Li(+) or TBA(+) showed no significant influence on the lifetime. The increase of V(oc) by the addition of tBP into the electrolyte containing Li(+) and the I(-)/I(3)(-) redox couple was mainly attributed to the shift of the CBP back to the negative potential by reducing the amount of adsorbed Li cations.  相似文献   

5.
The optimization of interfacial charge transfer is crucial to the design of dye-sensitized solar cells. In this paper we address the dynamics of the charge separation and recombination in liquid-electrolyte and solid-state cells employing a series of amphiphilic ruthenium dyes with varying hydrocarbon chain lengths, acting as an insulating barrier for electron-hole recombination. Dynamics of electron injection, monitored by time-resolved emission spectroscopy, and of charge recombination and regeneration, monitored by transient optical absorption spectroscopy, are correlated with device performance. We find that increasing dye alkyl chain length results in slower charge recombination dynamics to both the dye cation and the redox electrolyte or solid-state hole conductor (spiro-OMeTAD). These slower recombination dynamics are however paralleled by reduced rates for both electron injection into the TiO2 electrode and dye regeneration by the I-/I3- redox couple or spiro-OMeTAD. Kinetic competition between electron recombination with dye cations and dye ground state regeneration by the iodide electrolyte is found to be a key factor for liquid electrolyte cells, with optimum device performance being obtained when the dye regeneration is just fast enough to compete with electron-hole recombination. These results are discussed in terms of the minimization of kinetic redundancy in solid-state and liquid-electrolyte dye-sensitized photovoltaic devices.  相似文献   

6.
The dynamics of ultrafast electron injection from a coumarin derivative (NKX-2311), which is an efficient photosensitizer for dye-sensitized solar cells, into the conduction band of TiO(2) nanocrystalline films have been investigated by means of femtosecond transient absorption spectroscopy in a wide wavelength range from 600 nm to 10 mum. In the absence of Li(+) ions, electron injection into the TiO(2) conduction band occurred in about 300 fs. In the presence of Li(+) ions, however, electron injection occurred within approximately 100 fs, and the oxidized dye generated was found to interact with nearby Li(+) ions. Possible positions of Li(+) ion attachment to the dye molecule were examined by means of semiempirical molecular orbital calculations. The electron injection efficiency was found to increase by a factor of 1.37 in the presence of Li(+) ions. The effects of Li(+) ions on the energy of the TiO(2) conduction band and the electronic interaction between the dye molecule and Li(+) ions are discussed, and the major cause for the acceleration of electron injection was suggested to be a conduction-band shift of TiO(2).  相似文献   

7.
Addition of salts, especially perchlorates, to zwitterionic micelles of SB3-14, C(14)H(29)NMe(2)(+)(CH(2))(3)SO(3)(-), induces anionic character and uptake of H(3)O(+) by SB3-14 micelles. Thus, the addition of alkali metal perchlorates accelerates the acid hydrolysis of 2-(p-heptoxyphenyl)-1,3-dioxolane, HPD, in the presence of SB3-14 micelles, which depends on the local proton concentration at the micelle surface. The addition of metal chlorides to solutions of such perchlorate-modified SB3-14 micelles decreases both the negative zeta potential of the micelles and the observed rate constant for acid hydrolysis of HPD. The effect of the monovalent cations Li(+), Na(+), and K(+) is smaller than that of the divalent cations Be(2+), Mg(2+), and Ca(2+), and much smaller than that of the trivalent cations Al(3+), La(3+), and Er(3+). The major factor responsible for this cation valence dependence of these effects is shown to be electrostatic in nature, reflecting the strong dependence of the micellar surface potential on the cation valence. The fact that the salt effects are not identical after correction for the electrostatic effects indicates that additional secondary nonelectrostatic effects may contribute as well.  相似文献   

8.
Metal ion electrophilic catalysis has been revealed in dealkylation reactions of phosphinic esters 1-4 promoted by complexes of polyether ligands 5-7 with metal iodides MI(n) (M[n+] = Li(+), Na(+), K(+), Rb(+), Ca(2+), Sr(2+), Ba(2+)) in low polarity solvents (chlorobenzene, 1,2-dichlorobenzene, and toluene) at 60 degrees C. The catalytic effect increases with increasing the Lewis acid character of the cation, in the order Rb(+)< K(+)< Na(+)< Li(+) and Ba(2+)< Sr(2+)< Ca(2+). The results are interpreted in terms of a transition state where the complexed cation (M[n+] subset Lig) assists the departure of the leaving group Ph(2)P(O)O(-) and, at the same time, favors the attack at carbon of the nucleophile I(-) ("push-pull" mechanism). The rate sequence found for 1-4 (Me > Et > i-Pr and t-Bu) shows that this reaction can be utilized for the selective dealkylation of these substrates.  相似文献   

9.
In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on capacitive deionization of water containing NaCl/CaCl(2) mixtures, when the concentration of Na(+) ions in the water is five times the Ca(2+)-ion concentration. In this experiment, after applying a voltage difference between two porous carbon electrodes, first the majority monovalent Na(+) cations are preferentially adsorbed in the EDLs, and later, they are gradually replaced by the minority, divalent Ca(2+) cations. In a process where this ion adsorption step is followed by washing the electrode with freshwater under open-circuit conditions, and subsequent release of the ions while the cell is short-circuited, a product stream is obtained which is significantly enriched in divalent ions. Repeating this process three times by taking the product concentrations of one run as the feed concentrations for the next, a final increase in the Ca(2+)/Na(+)-ratio of a factor of 300 is achieved. The phenomenon of time-dependent ion selectivity of EDLs cannot be explained by linear response theory. Therefore, a nonlinear time-dependent analysis of capacitive charging is performed for both porous and flat electrodes. Both models attribute time-dependent ion selectivity to the interplay between the transport resistance for the ions in the aqueous solution outside the EDL, and the voltage-dependent ion adsorption capacity of the EDLs. Exact analytical expressions are presented for the excess ion adsorption in planar EDLs (Gouy-Chapman theory) for mixtures containing both monovalent and divalent cations.  相似文献   

10.
Here, we present the Li(+) insertion behavior of mesoporous ordered TiO(2)(B) nanoparticles (meso-TiO(2)(B)). Using presynthesized 4 nm TiO(2)(B) nanoparticles as building blocks and a commercially available ethylene glycol-propylene glycol block copolymer (P123) as a structure-directing agent, we were able to produce mesoporous structures of high-purity TiO(2)(B) with nanocrystallinity and mesopore channels ranging from 10 to 20 nm in diameter. We compared the Li(+) insertion properties of nontemplated TiO(2)(B) nanoparticles (nano-TiO(2)(B)) to meso-TiO(2)(B) via voltammetry and galvanostatic cycling and found significant increases in overall Li(+) insertion capacity for the latter. While nano-TiO(2)(B) and meso-TiO(2)(B) both show surface charging (pseudocapacitive) Li(+) insertion behavior, meso-TiO(2)(B) exhibits a higher overall capacity especially at high charge rates. We attribute this effect to higher electrode/electrolyte contact area as well as the improved electron and ion transport in meso-TiO(2)(B). In this study, we have demonstrated the influence of both nanostructuring and mesoporosity on Li(+) insertion behavior by rationally controlling the overall architecture of the TiO(2)(B) materials.  相似文献   

11.
In this paper we address the dependence of the charge recombination dynamics in dye-sensitized, nanocrystalline TiO2 films upon the properties of the sensitizer dye employed. In particular we focus upon dependence of the charge recombination kinetics upon the dye oxidation potential E0(D+/D), determined electrochemically, and the spatial separation r of the dye cation HOMO orbital from the metal oxide surface, determined by semiempirical calculations. Our studies employed a series of ruthenium bipyridyl dyes in addition to porphyrin and phthalocyanine dyes. A strong correlation is observed between the recombination dynamics and the spatial separation r, with variation in r by 3 A resulting in a more than 10-fold change in the recombination half-time t(50%). This correlation is found to be in agreement with electron tunneling theory, t(50%) proportional, variant exp(-betar) with beta = 0.95 +/- 0.2 A-1. In contrast, the recombination dynamics were found to be relatively insensitive to variations in E0D+/D), indicative of the recombination reaction lying near the peak of the Marcus free energy curve, DeltaG approximately lambda, and with lambda approximately 0.8 eV. A correlation is also observed between the recombination half-time and the temporal shape of the kinetics, with faster recombination dynamics being more dispersive (less monoexponential). Comparison with numerical Monte Carlo type simulations suggests this correlation is attributed to a shift from fast recombination dynamics primarily limited by dispersive electron transport within the metal oxide film to slower dynamics primarily limited by the interfacial electron-transfer reaction. We conclude that the primary factor controlling the charge recombination dynamics in dye-sensitized, nanocrystalline TiO2 films is the spatial separation of the dye cation from the electrode surface. In particular, we show that for the Ru(dcbpy)2NCS2 dye series, the use of X = NCS rather than X = CN results in a 2 A shift in the dye cation HOMO orbital away from the electrode surface, causing a 7-fold retardation of the recombination dynamics, resulting in the remarkably slow recombination dynamics observed for this sensitizer dye.  相似文献   

12.
The oxidative stability of glyme molecules is enhanced by the complex formation with alkali metal cations. Clear liquid can be obtained by simply mixing glyme (triglyme or tetraglyme) with lithium bis(trifluoromethylsulfonyl)amide (Li[TFSA]) in a molar ratio of 1:1. The equimolar complex [Li(triglyme or tetraglyme)(1)][TFSA] maintains a stable liquid state over a wide temperature range and can be regarded as a room-temperature ionic liquid consisting of a [Li(glyme)(1)](+) complex cation and a [TFSA](-) anion, exhibiting high self-dissociativity (ionicity) at room temperature. The electrochemical oxidation of [Li(glyme)(1)][TFSA] takes place at the electrode potential of ~5 V vs Li/Li(+), while the oxidation of solutions containing excess glyme molecules ([Li(glyme)(x)][TFSA], x > 1) occurs at around 4 V vs Li/Li(+). This enhancement of oxidative stability is due to the donation of lone pairs of ether oxygen atoms to the Li(+) cation, resulting in the highest occupied molecular orbital (HOMO) energy level lowering of a glyme molecule, which is confirmed by ab initio molecular orbital calculations. The solvation state of a Li(+) cation and ion conduction mechanism in the [Li(glyme)(x)][TFSA] solutions is elucidated by means of nuclear magnetic resonance (NMR) and electrochemical methods. The experimental results strongly suggest that Li(+) cation conduction in the equimolar complex takes place by the migration of [Li(glyme)(1)](+) cations, whereas the ligand exchange mechanism is overlapped when interfacial electrochemical reactions of [Li(glyme)(1)](+) cations occur. The ligand exchange conduction mode is typically seen in a lithium battery with a configuration of [Li anode|[Li(glyme)(1)][TFSA]|LiCoO(2) cathode] when the discharge reaction of a LiCoO(2) cathode, that is, desolvation of [Li(glyme)(1)](+) and insertion of the resultant Li(+) into the cathode, occurs at the electrode-electrolyte interface. The battery can be operated for more than 200 charge-discharge cycles in the cell voltage range of 3.0-4.2 V, regardless of the use of ether-based electrolyte, because the ligand exchange rate is much faster than the electrode reaction rate.  相似文献   

13.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.  相似文献   

14.
The electrochemical reaction of lithium with a vacancy-containing titanium hydroxyfluoride was studied. On the basis of pair distribution function analysis, NMR, and X-ray photoelectron spectroscopy, we propose that the material undergoes partitioning upon initial discharge to form a nanostructured composite containing crystalline Li(x)TiO(2), surrounded by a Ti(0) and LiF layer. The Ti(0) is reoxidized upon reversible charging to an amorphous TiF(3) phase via a conversion reaction. The crystalline Li(x)TiO(2) is involved in an insertion reaction. The resulting composite electrode, Ti(0)-LiF/Li(x)TiO(2) ? TiF(3)/ Li(y)TiO(2), allows reaction of more than one Li per Ti, providing a route to higher capacities while improving the energy efficiency compared to pure conversion chemistries.  相似文献   

15.
A molecular simulation study is reported for CO(2) adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na(+), K(+), Rb(+), Cs(+), Mg(2+), Ca(2+), and Al(3+)). The isosteric heat and Henry's constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs(+) < Rb(+) < K(+) < Na(+) < Ca(2+) < Mg(2+) < Al(3+)). At low pressures, cations act as preferential adsorption sites for CO(2) and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO(2) adsorption. Furthermore, the adsorption selectivity of CO(2)/H(2) mixture increases as Cs(+) < Rb(+) < K(+) < Na(+) < Ca(2+) < Mg(2+) ≈ Al(3+). At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H(2)O, the selectivity decreases drastically because of the competitive adsorption between H(2)O and CO(2), and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations.  相似文献   

16.
The geometries and energetics of complexes of Li(+), Na(+), K(+), Be(2+), Mg(2+), and Ca(2+)metal cations with different possible uric acid anions (urate) were studied. The complexes were optimized at the B3LYP level and the 6-311++G(d,p) basis set. Complexes of urate with Mg(2+), and Ca(2+)metal cations were also optimized at the MP2/6-31+G(d) level. Single point energy calculations were performed at the MP2/6-311++G(d,p) level. The interactions of the metal cations at different nucleophilic sites of various possible urate were considered. It was revealed that metal cations would interact with urate in a bi-coordinate manner. In the gas phase, the most preferred position for the interaction of Li(+), Na(+), and K(+) cations is between the N(3) and O(2) sites, while all divalent cations Be(2+), Mg(2+), and Ca(2+) prefer binding between the N(7) and O(6) sites of the corresponding urate. The influence of aqueous solvent on the relative stability of different complexes has been examined using the Tomasi's polarized continuum model. The basis set superposition error (BSSE) corrected interaction energy was also computed for complexes. The AIM theory has been applied to analyze the properties of the bond critical points (electron densities and their Laplacians) involved in the coordination between urate and the metal cations. It was revealed that aqueous solvation would have significant effect on the relative stability of complexes obtained by the interaction of urate with Mg(2+) and Ca(2+)cations. Consequently, several complexes were found to exist in the water solution. The effect of metal cations on different NH and CO stretching vibrational modes of uric acid has also been discussed.  相似文献   

17.
采用扫描电子显微镜、X射线衍射和粉末微电极分别考察了TiO2粉末的形貌、结构以及氧化I-的光电化学行为.结果表明,TiO2粉末晶型为锐钛矿,粒径在100~200 nm范围内.在光照条件下,在TiO2半导体电极上电化学氧化I-生成I2的超电势数值降低约1 V.以TiO2/ITO和Li4Ti5O12分别作为正负极,电解液为碳酸丙烯酯(PC)+LiClO4+LiI,并以聚偏氟乙烯(PVDF)作为隔膜构成分隔式电解池,进行整体电解并结合紫外-可见光谱进行分析.结果表明,该装置在光照条件下电池充电电压比非光照条件下的充电电压降低约0.9 V,且充电效率接近100%.该光电化学装置是一种可以利用光能充电的二次锂离子电池.  相似文献   

18.
Dynamics of interfacial electron transfer (ET) in the ruthenium-polypyridyl complex [{bis(2,2'-bpy)-(4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol)} ruthenium(II) hexafluorophosphate] (Ru-cat)-sensitized TiO(2) nanoparticles has been investigated using femtosecond transient absorption spectroscopy detecting in the visible and near-infrared region. It has been observed that Ru-cat is coupled strongly with the TiO(2) nanoparticles through its pendant catechol moiety. Electron injection has been confirmed by direct detection of electrons in the conduction band, cation radical of the adsorbed dye, and a bleach of the dye in real time as monitored by transient absorption spectroscopy. A single-exponential and pulse width limited (<100 fs) electron injection has been observed, and the origin of it might have been from the nonthermalized excited states of the Ru-cat molecule. The result gave a strong indication that the electron injection competes with the thermalization of the photoexcited states due to large coupling elements for the forward ET reaction. Back-ET dynamics has been determined by monitoring the decay kinetics of the cation radical and injected electron and also from recovery kinetics of the bleach of the adsorbed dye. It has been fit with a multiexponential function, where approximately 30% of the injected electrons are recombined with a time constant of <2 ps, again indicating large coupling elements for the charge recombination reaction. However, our results have shown relatively long-lived charge separation in the Ru-cat/TiO(2) system as compared to other organic dye-sensitized TiO(2) nanoparticles with similar interactions.  相似文献   

19.
The response of a monoaza-15-crown-5 with an optically active aminobenzoxazinone moiety to divalent cations was investigated. The crown ether was found to undergo a strong emission shift to the blue when complexed with specific divalent metals that have ionic diameters between 1.9-2.4 A. Consequently the photoactive macrocycle is responsive to Mg(2+), Ca(2+), Ba(2+), Sr(2+), Cd(2+), and particularly responsive to Hg(2+)and Pb(2+). Macrocycle emission spectra are shown to be a function of cation concentration. Alkaline metal cations and smaller transition metals ions such as Ni(2+), Co(2+)and Zn(2+)do not cause significant changes in the macrocycle emission spectra. Emission, absorption, and complex stability constants are determined. Mechanisms of cation selectivity and spectral emission shifts are discussed. Challenges involving immobilization of the macrocycle while preserving its spectral response to cations are explored.  相似文献   

20.
Dye-sensitized solar cells (DSC) were prepared from nanoporous TiO(2) electrodes with two different cobalt complex redox couples, propylene-1,2-bis(o-iminobenzylideneaminato)cobalt(II) {Co(II)(abpn)} and tris(4,4'-di-tert-buthyl-2,2'-bipyridine)cobalt(II) diperchlorate {Co(II)(dtb-bpy)(3)(ClO(4))(2)}. The performances of the DSCs were examined with varying the concentrations of the redox couples and Li cations in methoxyacetonitrile. Under 1 sun conditions, short-circuit currents (J(sc)) increased with the increase of the redox couple concentration, and the maximum J(sc) was found at the Li(+) concentration of 100 mM. To rationalize the observed trends of J(sc), electron diffusion coefficients and lifetimes in the DSCs were measured. Electron diffusion coefficients in the DSCs using cobalt complexes were comparable to the previously reported values of nanoporous TiO(2). Electron lifetime was independent of the concentration of the redox couples when the concentration ratio of Co(II)(L) and Co(III)(L) was fixed. With the increase of Li(+) concentration, the electron lifetime increased. These results were interpreted as due to their slow charge-transfer kinetics and the cationic nature of Co complex redox couples, in contrast to the anionic redox couple of I(-)/I(3)(-). The increase of the lifetimes with Li(+) was interpreted with the decrease of the local concentration of Co(III) near the surface of TiO(2). The addition of 4-tert-butylpyridine (tBP) with the presence of Li(+) increased J(sc) significantly. The observed increase of the electron lifetime by tBP could not explain the large increase of J(sc), implying that tBP facilitates the charge transfer from Co(II)(L) to dye cation, with the association of the change of the reorganization energy between Co(II) and Co(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号