首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In continuous magnetic fields H up to 28 T, we have studied the out-of-plane transport properties and tunneling characteristics of high-quality nondoped single crystals of the Bi-cuprate family: Bi2Sr2CuO6+δ (Bi2201), Bi2Sr2CaCu2O8+δ (Bi2212) and Bi2Sr2Ca2Cu3O10+δ (Bi2223) grown by an identical method. For all compounds the out-of-plane magnetotransport ρc(H) is negative in the temperature region where ρc(T) shows in the normal state a semiconducting-like temperature dependence. The negative magnetoresistance of ρc corresponds to the suppression of the semiconducting temperature dependence of ρc(T) which is found to be isotropic. For the Bi2201 compound, where the normal state can be reached in the available magnetic fields (28 T), a nearly complete suppression of the low-temperature upturn in ρc(T) is observed in the highest magnetic fields with a tendency towards a metallic behavior down to the lowest temperatures (0.4 K). Using the break-junction technique, especially for the Bi2212 and Bi2232 compounds, a clear superconducting gap structure can be observed. Both for temperatures above the critical temperature and for magnetic fields above the upper critical field, a pseudogap structure remains present in the tunneling spectra. The applied magnetic fields yield a stronger suppression of the superconducting state compared to that of the normal-state gap structures as manifested in ρc(T) transport and tunneling.  相似文献   

2.
The c-axis resistivity measurements were performed in the vicinity of the ab-plane in order to investigate the interaction between Josephson vortices and pancake vortices in Bi2Sr2CaCu2O8+δ mesoscopic single crystals. It was found that the angular dependence of the c-axis resistivity drastically changes in high magnetic field regime. The vortex lock-in transition becomes considerably broad in high magnetic fields, while the angular dependence of resistance exhibits the sharp lock-in features in low magnetic field region.  相似文献   

3.
The 31P-NMR experiments in YP and YPO4 as 2-qubits quantum computers were performed at room temperature under magnetic fields of 6.3 and 11.75 T with a coherent type pulsed FT-NMR spectrometer. The full width at half of the maximum intensity of NMR spectrum for 31P is compared with the second moment caused by the dipolar field. The obtained spin–lattice relaxation times T1 of 1.2 and 320 s for the P nuclei in YP and YPO4, respectively, suggest both compounds have the advantage of increasing the numbers of quantum computing operations.  相似文献   

4.
Magnetic oxide CuFeO2 is a magnetoelectric multiferroic with new type of spin–polarization coupling different from that in the spin-current mechanism, where magnetic field-induced or nonmagnetic impurity-induced proper helical magnetic ordering generates a spontaneous electric polarization parallel to the helical axis. Using a CuFe1−xGaxO2 sample with x=0.035, in which the single ferroelectric phase is realized below TN8 K in zero magnetic field unlike CuFe1−xAlxO2, we have performed pyroelectric current, thermally stimulated current (TSC) and polarized neutron diffraction measurements to study a memory effect that the electric polarization is partially preserved even for 2nd-cooling from above TN without poling electric field. It was found that the charge trapped during 1st-cooling with poling electric field, which is released as TSC on heating, plays an important role in the memory effect.  相似文献   

5.
In this work, the complete matrix of optical spectral levels in trigonal symmetry of 3d2 (3d8) ions are established on basis of strong field coupling mechanism by using two spin–orbit coupling parameters model. The contribution of the spin–orbit coupling of ligand to the optical spectra has been included in these formulas. As an application, the optical spectra of Cr4+ in Y2Ti2O7 and Y2Sn2O7 have been studied by the complete diagonalization (energy matrix) method. The covalent effect has been studied and the difficulty about Dq parameter in explanation of optical spectra of Cr-doped Y2Ti2O7 and Y2Sn2O7 is removed. The theoretical results are in good agreement with observed data.  相似文献   

6.
Pure rotational spectra of S235Cl2 and S235Cl37Cl have been observed using a Fourier-transform microwave spectrometer. An analysis of the hyperfine structure made by considering the nuclear spin statistics showed that S2Cl2 has C2symmetry, where the hyperfine splittings due to the two Cl nuclei were analyzed precisely. The nuclear quadrupole coupling constants including the off-diagonal (χabχacχbc) components and the nuclear spin–rotation interaction constants associated with the two Cl nuclei have been determined for the first time. We have shown that the nuclear quadrupole interaction plays an important role in the orthopara mixing.  相似文献   

7.
We have succeeded in synthesizing a powder form of Gd2Ba4CuFeOy (Gd2411) in air. GdBa2Cu3O7−δ (Gd123)/Gd2BaCuO5 (Gd211) precursor powders added with different amounts of Gd2Ba4CuFeOy (x = 0, 0.002, 0.004, 0.02) in molar ratio to Gd123 have been fabricated successfully into the form of large, single grains by the top seeded melt growth (TSMG) process. The relation between the additions amounts of Gd2411/Gd211 and critical current density (JC) was analyzed. We found Gd2411 particles stably exist in the Gd123 matrix without degradation of superconducting properties owing to the existence of the Fe magnetic ion. The trapped field was observed to increase significantly compared with the bulk without Gd2411 additions.  相似文献   

8.
Nuclear spin–lattice relaxation rate T 1 −1 has been measured for the ladder sites of two single crystals Sr14Cu24O41 (Sr14-A,B) by 63Cu NMR/NQR. The hole localization around 100 K appears as a peak in the T variation of T 1 −1(NQR). On the other hand, it is suppressed in the T 1 −1 (NMR) data under the magnetic field H ∼ 11 T, and a new peak appears around 20 K. T 1 −1(NMR) around the peak is more enlarged for Sr14-B than for Sr14-A. Hence, holes on the ladders of Sr14-B tend to be more localized. This is considered to be an origin for the occurrence of the magnetic order in Sr14-B under H ∼ 11 T.  相似文献   

9.
The structure of polyacrylamide gels was studied using proton spin–lattice relaxation and PFG diffusion methods. Polyacrylamide gels, with total polymer concentrations ranging from 0.25 to 0.35 g/ml and crosslinker concentrations from 0 to 10% by weight, were studied. The data showed no effect of the crosslinker concentration on the diffusion of water molecules. The Ogston–Morris and Mackie–Meares models fit the general trends observed for water diffusion in gels. The diffusion coefficients from the volume averaging method also fit the data, and this theory was able to account for the effects of water-gel interactions that are not accounted for in the other two theories. The averaging theory also did not require the physically unrealistic assumption, required in the other two theories, that the acrylamide fibers are of similar size to water molecules. Contrary to the diffusion data,T1relaxation measurements showed a significant effect of crosslinker concentration on the relaxation of water in gels. The model developed using the Bloch equations and the volume averaging method described the effects of water adsorption on the gel medium on both the diffusion coefficients and the relaxation measurements. In the proposed model the gel medium was assumed to consist of three phases (i.e., bulk water, uncrosslinked acrylamide fibers, and a bisacrylamide crosslinker phase). The effects of the crosslinker concentration were accounted for by introducing the proton partition coefficient,Keq, between the bulk water and crosslinker phase. The derived relaxation equations were successful in fitting the experimental data. The partition coefficient,Keq, decreased significantly as the crosslinker concentration increased from 5 to 10% by weight. This trend is consistent with the idea that bisacrylamide tends to form hydrophobic regions with increasing crosslinker concentration.  相似文献   

10.
Low field (2 MHz) Nuclear Magnetic Resonance (NMR) proton spin–spin relaxation time (T2) distribution measurements were employed to investigate tetrahydrofuran (THF)—deuterium oxide (D2O) clathrate hydrate formation and dissociation processes. In particular, T2 distributions were obtained at the point of hydrate phase transition as a function of the co-existing solid/liquid ratios. Because T2 of the target molecules reflect the structural arrangements of the molecules surrounding them, T2 changes of THF in D2O during hydrate formation and dissociation should yield insights into the hydrate mechanisms on a molecular level. This work demonstrated that such T2 measurements could easily distinguish THF in the solid hydrate phase from THF in the coexisting liquid phase. To our knowledge, this is the first time that T2 of guest molecules in hydrate cages has been measured using this low frequency NMR T2 distribution technique. At this low frequency, results also proved that the technique can accurately capture the percentages of THF molecules residing in the solid and liquid phases and quantify the hydrate conversion progress. Therefore, an extension of this technique can be applied to measure hydrate kinetics. It was found that T2 of THF in the liquid phase changed as hydrate formation/dissociation progressed, implying that the presence of solid hydrate influenced the coexisting fluid structure. The rotational activation measured from the proton response of THF in the hydrate phase was 31 KJ/mole, which agreed with values reported in the literature.  相似文献   

11.
To examine the difference between the magnetic structures of Sr2MGe2O7 (M=Mn, Co), we evaluated their spin exchange interactions by performing energy-mapping analysis based on density functional theory calculations. The calculated intra- and inter-layer spin exchanges correctly predict the G-type and C-type antiferromagnetic structures of Sr2MnGe2O7 and Sr2CoGe2O7, respectively, and the Curie–Weiss temperatures estimated from these spin exchanges are also in good agreement with the experiment. The ∥c and ⊥c orientations of the spins in the ordered magnetic structures of Sr2MnGe2O7 and Sr2CoGe2O7, respectively, were also examined by considering spin–orbit coupling.  相似文献   

12.
α-Fe2O3 nanoparticles were prepared by high-energy ball milling using α-FeOOH as raw materials. The prepared samples were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy, X-ray diffraction (XRD) and differential thermal analysis–thermogravimetric analysis (DTA–TGA). The results showed that after 90 h milling α-Fe2O3 nanoparticles were obtained, and the particle size is about 20 nm. The mechanism of reaction during milling is supposed that the initial α-FeOOH powder turned smaller and smaller by the high-speed collision during ball milling, later these particles turned to be superparamagnetic, at last these superparamagnetic α-FeOOH particles were dehydrated and transformed into α-Fe2O3.  相似文献   

13.
We report the upper critical field Hc2 in a ternary iron-silicide superconductor Lu2Fe3Si5 with Tc  6 K obtained by the resistivity measurements. We find that Hc2 increases linearly with decreasing temperature down to Tc/3, and Hc2(T = 0) exceeds the orbital depairing field described by the Werthamer–Helfand–Hohenberg theory. We also find that the anisotropy of Hc2 is nearly independent of temperature and the angular dependence of Hc2 is well-described by the anisotropic Ginzburg–Landau model. These results strongly indicate the presence of two distinct superconducting gaps in Lu2Fe3Si5 although the behavior is slightly different from that of the typical two-gap superconductor MgB2.  相似文献   

14.
The binary system CeO2–ZrO2 is thermally stable and has superior reduction–oxidation properties. It has been commonly used in the three-way catalytic converters for automobiles. In this work, an inorganic biomorphic porous CexZr1−xO2 fibrous network was successfully synthesized by using the egg shell membrane (ESM) as templates, and its morphology was a perfect replica of the original ESM. The synthesis involved a simple infiltration and calcination process. A fresh ESM was peeled from a chicken egg shell. It was soaked in a Ce(NO3)3 and Zr(NO3)4 mixture before it was calcined at 700 °C in ambient environment. The fibers in the biomorphic network had diameter ranged from 1 to 4 μm, and they were composed of CexZr1−xO2 nanocrystallites having an average grain size of 10 nm.  相似文献   

15.
The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (μMRI) at 13 and 26 μm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the μMRI signal. When the imaging voxel size was 6.76 × 10−4 mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81–20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field.  相似文献   

16.
成功生长了Co50Ni21Ga29:Si(x=1,2)单晶样品,对其磁性,马氏体相变及其相关性质进行了细致的测量.发现掺Si成分的单晶具有非常迅速的马氏体相变行为、2.5%的大相变应变、大于100 ppm的磁感生应变和4.5%的相变电阻.进一步研究指出,在CoNiGa合金中掺入适量Si元素,能够降低材料的马氏体相变温度,减小相变热滞后,提高材料的居里温度,并使得磁性原子的磁矩有所降低.尤其重要的是Si元素的添加能够增大材料马氏体的磁晶各向异性能,改善马氏体变体的迁移特性,从而获得更大的磁感生应变. 关键词: 铁磁形状记忆合金 Heusler合金 50Ni21Ga29Six')" href="#">Co50Ni21Ga29Six  相似文献   

17.
63,65Cu nuclear quadrupole resonance (NQR) was applied to study the natural mineral Cu12As4S13 (tennantite) in the temperature range 4.2–210 K. The obtained results point to the presence of field fluctuations caused by internal motions in tennantite. Consistently with the crystal structure, the experimental data can be described by an occurrence of a magnetic phase transition, which takes place near 65 K. The low-temperature phase is characterized by Cu(II) electron magnetic moments freezing in the form of a spin-glass-like constitution.  相似文献   

18.
Rod-like and platelet-like nanoparticles of simple-crystalline barium hexaferrite (BaFe12O19) have been synthesized by the molten salt method. Both particle size and morphology change with the reaction temperature and time. The easy magnetization direction (0 0 l) of the BaFe12O19 nanoparticles has been observed directly by performing X-ray diffraction on powders aligned at 0.5 T magnetic field. The magnetic properties of the BaFe12O19 magnet were investigated with various sintering temperatures. The maximum values of saturation magnetization (σs=65.8 emu/g), remanent magnetization (σr=56 emu/g) and coercivity field (Hic=5251 Oe) of the aligned samples occurred at the sintering temperatures of 1100 °C. These results indicate that BaFe12O19 nanoparticles synthesized by the molten salt method should enable detailed investigation of the size-dependent evolution of magnetism, microwave absorption, and realization of a nanodevice of magnetic media.  相似文献   

19.
The conductivity and elastic modulus of (CeO2)1 − x(YO1.5)x for x values of 0.10, 0.15, 0.20, 0.30, and 0.40 were investigated by experiments and molecular dynamics simulations. The calculated conductivity exhibited a maximum value at approximately 15 mol% Y2O3; this trend agreed with that of the experimental results. In order to clarify the reason for the occurrence of the maximum conductivity, the paths for the transfer of oxygen vacancies were counted. The numerical result revealed that as the content of Y2O3 dopant increases, the number of paths for the transfer of oxygen vacancies decreases, whereas the number of oxygen vacancies for conductivity increases. Thus, the trade-off between the increase in the number of vacancy sites and the decrease in the vacancy transfer was considered to be the reason for the maximum conductivity occurring at the Y2O3 dopant content of approximately 15 mol%. The calculated elastic modulus also exhibited a minimum value at approximately 20 mol% Y2O3, which also agreed with the experimental results. It was shown that the Y–O–Y bonding energy increased with the increasing content of Y2O3 dopant. Thus, the trade-off between the increase in the number of vacancy sites and that in the Y–O–Y bonding energy was considered to be the reason for the minimum elastic modulus occurring at the Y2O3 dopant content of approximately 20 mol%.  相似文献   

20.
Polycrystalline perovskite cobalt oxide Eu0.5Sr0.5CoO3 was prepared by the conventional solid-state reaction method. X-ray powder patterns indicated the prepared samples are pure, cubic perovskite structure (Pm3?m), and with no evidence of any secondary phases. The dc magnetization and ac susceptibility measurements were carried out to investigate the magnetic properties of the sample, and which indicated that cluster-glasses properties are suppressed with the increasing of the coercive field. We denied the possibility of spin-glasses and the existence of the Hopkinson effect in Eu0.5Sr0.5CoO3 through the temperature-dependent ac susceptibility measurements, and explained the magnetic behavior of Eu0.5Sr0.5CoO3 with the competition between magnetic anisotropy and the external magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号