首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The geometry and electronic structure of the amino group in aniline and its derivatives are very sensitive to both intramolecular interactions such as substituent effects and intermolecular ones such as H-bonding. An analysis of experimental geometries retrieved from the CSD base and computational modeling of aniline and its derivatives and their H-bonded complexes by use of B3LYP/6-311+G** and MP2/aug-cc-pVDZ showed that the degree of pyramidalization of the amino group depends on H-bonding, which exists in two forms, (i) NH...B (base) and (ii) N...HB (Br?nsted acid), both of which affect the shape of the NH2 group. The effect may be significantly enhanced by a substituent through resonance interaction from electron-attracting substituents. The NH...B interactions lead to a substantial planarization of the group, whereas N...HB interactions do not. The natural bond orbital analysis allowed the authors to show that the changes in occupancy of the "lone pair" orbital and in geometry parameters describing pyramidalization of the group depend on the substituent constants.  相似文献   

2.
Molecular geometries of phenol and p-nitrophenol (ArOH) interacting with fluoride were optimized at the B3LYP/6-311+G level of theory taking as constraints the planarity of the systems and the linearity of the O...H...F moiety. For p-nitrophenol complexes, the substituent effect stabilization energy (SESE) was computed, and for all systems aromaticity indices, HOMA, and out-of-plane components of NICS(1) and NICS(1)(zz)() were calculated. SESE values depend strongly on the O...F distance, the same as both aromaticity indices. Variation in HOMA values for the studied ArOH...F(-) complexes is within the range of 0.55 to approximately 1.0 and for NICS(1)(zz)() between -12 and -26 ppm. It was also found that a decrease in aromaticity is well correlated with the variations of C-O bond length.  相似文献   

3.
Aromaticity of the ring of variously substituted phenols in their H-bonded complexes with various bases was a subject of analysis based on 664 geometries retrieved from CSD and by use of the aromaticity index HOMA. GEO and EN, the components of the HOMA index, describing a decrease of aromaticity due to an increase of bond alternation (GEO term) and bond elongation (EN term), were also studied. There is an approximate monotonic dependence of HOMA and GEO on the H-bond strength estimated by the C-O bond length of the hydroxyl group in phenols.  相似文献   

4.
The electronic structures and stabilities of pure M(12)- and M(12)(2-) were systematically investigated within density functional theory. The nucleus-independent chemical shifts (NICSs) of I(h) Sn(12)(2-) and Pb(12)(2-) are -5.0 and -20.7 ppm, respectively, based on B3LYP/aug-cc-pVDZ-PP predictions, whereas the NICS of Sn(12)(2-) is predicted to be 1.1 ppm by B3LYP/LanL2DZ. A startling conclusion is that the NICS4d of Sn(12)(2-) and NICS(5d) of Pb(12)(2-) are -5.0 and -7.5 ppm, respectively, suggesting the significant contribution of the inner d orbitals to the total NICS values. This provides the first quantitative evidence for the existence of "d-orbital aromaticity" in Sn- and Pb-based clusters with three-dimensional structures. The d orbitals also contribute to the total NICSs of the K-coordinated clusters. The NICS predictions suggest that larger basis sets including d-orbitals are needed to analyze the aromaticity of some main-group-metal-based clusters (e.g., Sn- and Pb-based clusters) to obtain accurate predictions.  相似文献   

5.
6.
The H-bonded complexes formed from interaction between 5-fluorouracil (FU) and DNA pyrimidine bases have been investigated by B3LYP method using 6-311++G** basis set in the gas phase and the water solution. Vibrational frequencies and physical properties such as dipole moment, chemical potential, and chemical hardness of these compounds have been systematically explored. The natural bond orbital analysis and the Bader’s quantum theory of atoms in molecules are also used to elucidate the interaction characteristics of the investigated complexes. The aromaticity is measured using several well-established indices of aromaticity such as NICS, HOMA, PDI, ATI, and FLU. The MEP is given the visual representation of the chemically active sites and comparative reactivity of atoms. Furthermore, the effects of interactions on NMR data have been used for further investigation of the studied compounds.  相似文献   

7.
Molecular geometries of ortho-hydroxy Schiff base in keto-enamine and enol-imine tautomeric forms, its anion, and their derivatives in which H+ was replaced with Li+ or BeH+ were optimized at the B3LYP/6-311+G level of theory. Isodesmic reactions for estimating delocalization due to H-bonding or cation chelating were calculated. Geometry-based aromaticity index HOMA and magnetism-based NICS1(zz) index were used to estimate pi-electron delocalization. Keto-enamine tautomer exhibits low aromaticity in the ring and a relatively high pi-electron delocalization in the quasi-ring. The reverse was found for enol-imine tautomer. The Li+ and BeH+ derivatives showed a relatively high pi-electron delocalization in the ring and in the quasi-ring. This may be interpreted by an extension of the electron delocalization path in the pi-electron system through low-lying unoccupied p-type orbitals of Li+ and BeH+ cations.  相似文献   

8.
A homogeneous set of values for the aromaticity indices ASE (Aromatic Stabilisation Energy), HOMA (Harmonic Oscillator Model of Aromaticity) and NICS(1) (Nucleus-Independent Chemical Shift) for azoles has been investigated using multiple linear regression analysis. Statistically-significant relationships were found between the aromaticity indices and the number of nitrogen atoms at positions 2/5 and 3/4 of the ring. Aza-derivatives of pyrrole, furan and thiophene all gave similar relationships. For all three indices aza-substitution at positions 2 and/or 5 increases aromaticity. However, aza-substitution at positions 3 and/or 4 decreases classical aromaticity (ASE and HOMA) but increases magnetic aromaticity (NICS(1)). These indices appear to be measuring different properties of the azoles. The influence of aza-substitution on these different aspects of aromaticity is tentatively rationalized in terms of either bond length equalization or uniformity of π electron distribution.  相似文献   

9.
Four tautomers of purine (1-H, 3-H, 7-H, and 9-H) and their equilibrium H-bonded complexes with F(-) and HF for acidic and basic centers, respectively, were optimized by means of the B3LYP/6-311++G(d,p) level of theory. Purine tautomer stability increases in the following series: 1-H < 3-H < 7-H < 9-H, consistent with increasing aromaticity. Furthermore, the presence of a hydrogen bond with HF does not change this order. For neutral H-bonded complexes, the strongest and the weakest intermolecular interactions occur (-14.12 and -10.49 kcal/mol) for less stable purine tautomers when the proton acceptor is located in the five- and six-membered rings, respectively. For 9-H and 7-H tautomers the order is reversed. The H-bond energy for the imidazole complex with HF amounts to -14.03 kcal/mol; hence, in the latter case, the fusion of imidazole to pyrimidine decreases its basicity. The ionic H-bonds of N(-)···HF type are stronger by ~10 kcal/mol than the neutral N···HF intermolecular interactions. The hydrogen bond N(-)···HF energies in pyrrole and imidazole are -32.28 and -30.03 kcal/mol, respectively, and are substantially stronger than those observed in purine complexes. The aromaticity of each individual ring and of the whole molecule for all tautomers in ionic complexes is very similar to that observed for the anion of purine. This is not the case for neutral complexes and purine as a reference. The N···HF bonds perturb much more the π-electron structure of five-membered rings than that of the six-membered ones. The H-bonding complexes for 7-H and 9-H tautomers are characterized by higher aromaticity and a much lower range of HOMA variability.  相似文献   

10.
Exponential dependencies between locally calculated geometric and magnetic indexes of aromaticity, harmonic oscillator model of aromaticity (HOMA) and nucleus independent chemical shifts (NICS)(0), NICS(1) and NICS(1)zz, and the number of conjugated benzene rings in linear acenes, from benzene to decacene were observed at B3LYP/6-311+G** level of theory. Correlations between HOMA and NICS indexes showed exponential dependencies and were fitted with simple three-parameter function. Similar correlations between both indexes of aromaticity and proton and carbon nuclear isotropic shieldings of individual acene rings were observed. Contrary to proton data, the predicted 13C nuclear isotropic shieldings of carbon atoms belonging to inner rings in polyacenes were less shielded, indicating lower aromaticity and therefore, higher reactivity.  相似文献   

11.
The antiaromaticity of a series of dications of p-substituted diphenylmethylidene fluorenes was explored using three criteria attributed to aromaticity/antiaromaticity. The relative stability of the dications (energetic criterion) was measured via the redox potentials obtained by electrochemical oxidation under very fast sweep rates with microelectrodes. Comparison of redox potentials with those of a model system, p-substituted tetraphenylethylenes, shows relatively small destabilization of the potentially antiaromatic fluorenylidene dication. However, the amount of destabilization is comparable with the limited electrochemical data available for other antiaromatic systems. Nucleus independent chemical shifts (NICS) were calculated for these dications (magnetic criterion) and indicated their antiaromaticity. A good linear relationship between experimental and calculated (B3LYP/6-31G(d)) (1)H and (13)C NMR shifts for the three dications, 3c, 3e, and 3f, for which NMR data has been reported, validated the accuracy of the NICS values. Bond length alternation/elongation (structural criterion) was explored via the harmonic oscillator model of aromaticity (HOMA) using the geometries calculated with density functional theory, but there was insufficient variation to evaluate relative antiaromaticity. In addition, the presence of benzannulation appears to restrict bond length alternation to such an extent that the magnitude of the HOMA index is of little use in evaluating the antiaromaticity of many polycyclic hydrocarbons. Both NICS values and redox potentials for formation of the dication in these systems show a strong linear correlation with sigma(p)(+) values, with the more antiaromatic fluorenylidene dication possessing the more electron-withdrawing substituent. The correlation between NICS values and redox potentials is also good, as might be expected, suggesting a strong relationship between magnetic and energetic characteristics of antiaromaticity. However, magnetic characteristics appear to be a more sensitive probe than energetic characteristics evaluated through redox potentials or structural characteristics evaluated through HOMA calculations.  相似文献   

12.
13.
Several phosphaquinodimethanes and their M(CO)5 complexes (M=Cr, Mo, W) and model derivatives have been theoretically investigated regarding the quest of non-innocence. Computed structural and electronic properties of the P-Me/NH2 substituted phosphaquinodimethanes and tungsten complexes revealed an interesting non-innocent ligand behaviour for the radical anion complexes with distonic ion character and a strong rearomatization of the middle phenyl ring. The latter was further probed taking also geometric aromaticity (HOMA) and quinoid distortion parameters (HOMQc) into account, as well as NICS(1). Furthermore, the effect of the P-substitution was investigated for real (or plausible) complexes and their free ligands focusing on the resulting aromaticity at the middle phenyl ring and vertical one-electron redox processes. The best picture of ligand engagement in redox changes was provided by representing NICS(1) values versus HOMA and the new geometric distortion parameter HOMQc8.  相似文献   

14.
Structures of selected polycyclic conjugated hydrocarbons with –B=B– and –BH–BH– moieties inserted in different places were calculated at the B3LYP/6-311++G** level and their aromatic properties evaluated. HOMA, NICS(0), NICS(1)zz, Λ and PDI indices were used for studying their aromatic properties. Both optimized planar (as in parent hydrocarbons) and non-planar structures were taken into account. It is shown that insertion of both types of boron groups disturbs and decreases the aromaticity of the corresponding hydrocarbons. The decreasing effect of the –BH–BH– group is much stronger. What is quite intriguing is that it appears that non-planar structures of the studied compounds have a little higher aromaticity than the strictly planar ones. Mutual correlations between results obtained by different aromaticity indices are calculated and thoroughly discussed.  相似文献   

15.
In this work, we have analyzed the local aromaticity of the six-membered rings (6-MRs) of planar and pyramidalized pyracylene species through the structurally based harmonic oscillator model of aromaticity (HOMA), the electronically based para-delocalization index (PDI), and the magnetic-based nucleus independent chemical shift (NICS) measurements, as well as with maps of ring current density. According to ring currents and PDI and HOMA indicators of aromaticity, there is a small reduction of local aromaticity in the 6-MRs of pyracylene with a bending of the molecule. In the case of NICS, the results depend on whether the NICS value is calculated at the center of the ring (NICS(0)) or at 1 A above (NICS(1)(out)) or below (NICS(1)(in)) the ring plane. While NICS(1)(out) values also indicate a slight decrease of aromaticity with bending, NICS(0) and NICS(1)(in) wrongly point out a large increase of aromaticity upon distortion. We have demonstrated that the NICS(0) reduction in the 6-MRs of pyracylene upon bending is due to (a) a strong reduction of the paratropic currents in 5-MRs and (b) the fact that, due to the distortion, the paratropic currents point their effects in other directions.  相似文献   

16.
Density functional theory (B3LYP) calculations were performed to examine the effect of Si substitution on the aromaticity of some polycyclic hydrocarbons using geometric criterion (HOMA), isodesmic isomerization reactions, homodesmotic equations, NICS values, chemical hardness, and out-of-plane distortive tendencies. The HOMA values are lower and the NICS values are higher in the Si-substituted rings compared to those in the hydrocarbon counterpart, whereas the homodesmotic equations predict little loss of aromaticity upon Si replacement in polycylic systems. The chemical hardness values decrease and the out-of-plane distortive tendency increases upon silicon substitution. The relative energies of the positional isomers and the causative factors are analyzed. The high reactivity of some silaaromatics toward dimerization is explained based on local softness indices.  相似文献   

17.
The geometries of multiply fused dehydrobenzo[12]annulenes [12]DBAs 2-7 with various topologies, which are considered as graphyne fragments, have been optimized at the B3LYP/6-31G* level of theory. Most of the optimized geometries of fused DBAs have planar structures excluding a boomerang-shaped bisDBA 4, a trefoil-shaped trisDBA 6, and a wheel-shaped DBA 7. For the boomerang-shaped bisDBA 4 and the trefoil-shaped trisDBA 6, distortions originate from the steric repulsion between hydrogen atoms attached to adjacent benzene rings. The harmonic oscillator model of aromaticity (HOMA) values at the central benzene ring of multiply fused DBAs decrease as the number of fused 12-membered rings increases except for the closely related structures 4 and 5 and 6 and 7, because of bond length elongation due to conjugation with the phenylethynyl groups. Nucleus-independent chemical shifts (NICS) were computed at the individual ring centers of the fused DBAs. The fusion of the antiaromatic 12-membered rings results in increasing (more positive) NICS values at the central benzene ring, indicating the decrease of diatropic ring currents. Furthermore, HOMO-LUMO gaps of the DBAs 2-7 are strongly influenced by the molecular topology. The para-conjugation pathway of the bis(phenylethynyl)benzene unit plays a more important role in the determination of the electronic properties of multiply fused DBAs than the meta- and ortho-conjugation pathways.  相似文献   

18.
19.
Cyclopentadiene derivatives with electronegative (F, Cl) or electropositive (H(3)Si, Me(3)Si) bis-5,5-substituents were studied at the B3LYP/6-311G* level of theory. It was found that there is no special stabilization or destabilization for any of the derivatives; the energetic effects that were previously attributed to aromatic stabilization or antiaromatic destabilization are the result of interactions in the reference systems. A nucleus-independent chemical shift (NICS) scan study at the HF-GIAO/6-311+G* theoretical level of these and similar derivatives suggest that they all show different magnitudes of diamagnetic ring current. None of the derivatives shows a paramagnetic ring current. Thus, cyclopentadienes are neither aromatic nor antiaromatic. It is also concluded that a diamagnetic ring current is perhaps necessary but certainly not a sufficient condition for aromaticity. The NICS scan procedure describes the type of ring current in the system, whereas a single isotropic NICS value (i.e., NICS(1)) may wrongly assign the type of ring current. It is shown that neither NICS(1) nor the NICS scan procedure can be used as a single aromaticity criterion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号