首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
For the first time, to the best of authors’ knowledge, a no-moving-parts axial scanning confocal microscope (ASCM) system is designed and demonstrated using a combination of a large diameter liquid crystal (LC) lens and a classical microscope objective lens. By electrically controlling the 5 mm diameter LC lens, the 633 nm wavelength focal spot is moved continuously over a 48 μm range with a measured 3-dB axial resolution of 3.1 μm using a 0.65 numerical aperture (NA) micro-objective lens. The ASCM is successfully used to image an Indium Phosphide (InP) twin square optical waveguide sample with a 10.2 μm waveguide pitch and 2.3 μm height and width. Using fine analog electrical control of the LC lens, a super-fine sub-wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be useful in various precision three-dimensional (3D) imaging and profiling applications.  相似文献   

2.
We propose and demonstrate an OCT optical probe using eccentric optics. This probe enabled both forward imaging and side imaging by dividing a circular scanning area into two semicircular scanning areas using an external motor to rotate the flexible tube. The outer diameter of the probe was 2.6 mm, and its rigid portion length was 10 mm. The lateral resolution was 23 μm, and the eccentric radius was 1.1 mm. The circumferential length in scanning was 6.9 mm, and the working distance was 5 mm. OCT images of 1.5 mm × 6.9 mm (in tissue, axial × circumference), including forward image and side image, were measured with the axial resolution of 19 μm in air and a frame rate of one frame per second. The epidermis, dermis, and sweat gland of in vivo human ventral finger tips were observed.  相似文献   

3.
We propose and demonstrate quadrature fringes wide-field optical coherence tomography (QF WF OCT) to expand an optical Hilbert transformation to two-dimensions. This OCT simultaneously measures two quadrature interference images using a single InGaAs CCD camera to obtain en face OCT images. The axial and lateral resolutions are measured at 29 μm in air and 70 μm limited by a pixel size of camera using a superluminescent diode with a wavelength of 1.3 μm as the light source; the system sensitivity is determined to be −90 dB. The area of the en face OCT images is 4.0 mm × 4.0 mm (160 × 160  pixels). The OCT images are measured axially with steps of 10 μm. The en face OCT images of a in vivo human fingertip and a in situ rat brain are three-dimensionally measured up to the depth of about 3 mm with some degradations of a lateral resolution.  相似文献   

4.
Supercontinuum generation in single crystal sapphire fibers   总被引:1,自引:0,他引:1  
In this paper, we report supercontinuum generation by launching ultra-short femtosecond laser pulses into single crystal sapphire fibers. The major advantages of using sapphire fiber for supercontinuum generation are: (1) high transparency up to 5 μm, (2) low material dispersion in the 0.8-5 μm spectral range, and (3) a higher laser damage threshold (500 times higher than that of silica). Thus, a very high power, super broadband [from visible to middle IR (up to 5 μm)], supercontinuum source can be realized by employing sapphire fiber for supercontinuum generation. Our experimental results also confirm that sapphire fiber can offer a broader supercontinuum spectrum than that of bulk sapphire counterpart under the same exciting conditions. This work opens the door to new opportunities in generating high power supercontinuum radiation (in particular, at the middle-IR regime), and will have a great impact on many applications, including sensing and broadband multi-spectrum free space communications.  相似文献   

5.
A time-domain full-field OCT adapted to the visible range and with an original configuration using an interferometric objective, that minimizes mechanical vibrations and some settings and that performs imaging without moving the sample, is presented. This setup achieves micrometer scale imaging, 1.5 μm in the axial direction and 1.2 μm in the lateral one. The principle of micro-spectrometry from OCT data by Fourier transform is described and the influence of some key data processing parameters is simulated and discussed. The experimental spectra reconstruction from tomographic data is validated by comparison with transmittance spectra. Imaging and spectra of dyes at a micrometer scale are obtained from the same data volume.  相似文献   

6.
Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 μm. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 μm, and is capable of quantifying very thin coatings in the range of 10-60 μm. The upper limit of 60 μm within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 μm. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 μm and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.  相似文献   

7.
This paper presents a simple index-guiding square photonic crystal fiber (SPCF) where the core is surrounded by air holes with two different diameters. The proposed design is simulated through an efficient full-vector modal solver based on the finite difference method with anisotropic perfectly matched layers absorbing boundary condition. The nearly zero ultra-flattened dispersion SPCF with low confinement loss, small effective area as well as broadband supercontinuum (SC) spectra is targeted. Numerical results show that the designed SPCF has been achieved at a nearly zero ultra-flattened dispersion of 0 ± 0.25 ps/(nm·km) in a wavelength range of 1.38 μm to 1.89 μm (510 nm band) which covers E, S, C, L and U communication bands, a low confinement loss of less than 10−7 dB/m in a wavelength range of 1.3 μm to 2.0 μm and a wide SC spectrum (FWHM = 450 nm) by using picosecond pulses at a center wavelength of 1.55 μm. We then analyze the sensitivity of chromatic dispersion to small variations from the optimum value of specific structural parameters. The proposed index-guiding SPCF can be applicable in supercontinuum generation (SCG) covering such diverse fields as spectroscopy applications and telecommunication dense wavelength division multiplexing (DWDM) sources.  相似文献   

8.
We study displacement and strain measurement error of dual transducers (two linear arrays, aligned orthogonally and coplanar). Displacements along the beam of each transducer are used to obtain measurements in two-dimensions. Simulations (5 MHz) and experiments (10 MHz) are compared to measurements with a single linear array, with and without angular compounding. Translation simulations demonstrate factors of 1.07 larger and 8.0 smaller biases in the axial and lateral directions respectively, for dual transducers compared to angular compounding. As the angle between dual transducers decreases from 90° to 40°, for 1% compression simulations, the lateral RMS error ranges from 2.1 to 3.9 μm compared to 9 μm with angular compounding. Simulation of dual transducer misalignment of 1 mm and 2° result in errors of less than 9 μm. Experiments demonstrate factors of 3.0 and 5.2 lower biases for dual transducers in the axial and lateral directions respectively compared to angular compounding.  相似文献   

9.
We report real-time imaging and dynamics monitoring of micrometer predefined and random sized particles by time-space-wavelength mapping technology using a single-detector. Experimentally, we demonstrate real-time line imaging of a 5 μm polystyrene microsphere, glass powder particles and patterns such as fingerprints with up to 5 μm resolution at 1 line/50 ns capture rate. By using the same setup, real-time displacement tracking of micrometer-size glass particles with 50 ns temporal resolution and up to 5 μm spatial resolution is achieved. We also show that existing correlation spectroscopy algorithms can be adopted to extract dynamic information in a complex environment.  相似文献   

10.
We demonstrate the feasibility of a compact single-shot full-field time domain optical coherence tomography (OCT) for imaging dynamic biological sample in real-time. The system is based on a Linnik type polarization Michelson interferometer and a four-quadrature phase-stepper optics, which can simultaneously capture four quadraturely phase-stepped interferograms on a single CCD. Using a superluminescent diode as light source with center wavelength of 842 nm and spectral width of 16.2 nm, the system yields an axial resolution of 19.8 μm, and covers a field of view of 280 × 320 μm2 (220 × 250 pixels) with a transverse resolution of 4.4 μm by using a 10× microscope objective (0.3 NA). Three-dimensional OCT images of biological samples such as an onion slice and a diaptomus were obtained without any image averaging or pixel binning. In addition, in vivo depth resolved dynamic imaging was demonstrated to show the beating internal structure of a diaptomus with a fame rate of 5 fps.  相似文献   

11.
It has been a challenge to overcome the corneal curvature radius to design a full-pupil field, non-contact and high resolution corneal curved objective lens, which covers the cornea full-pupil field and has the ability to resolve corneal cells. In this paper, we report an optical design of a full-pupil field, non-contact corneal curved objective lens for high resolution cornea imaging. The advantages of this lens are that it has a wide field of view (FOV) with the corneal curved image surface, maintains the beam normal incidence, as well as non-contact lens imaging, and offers a cell-level lateral resolution of cornea structure. The analysis of optimization shows that the system achieves diffraction limit in a circular FOV of 4 mm diameter covering the full-pupil zone. The theoretical lateral resolution is about 2.5 μm with an image space NA of 0.16, which is sufficient to resolve corneal cells of 7 μm diameter, and the working distance is larger than 15 mm which is enough for a non-contact objective lens. So the optical design is effectively and efficiently meeting the demand of specifications.  相似文献   

12.
Supercontinuum generation by dual-wavelength nanosecond pumping in the vicinity of both zero-dispersion wavelengths of a photonic crystal fiber (PCF) is experimentally demonstrated. It is shown in particular that two pumps at 1535 nm and 767 nm simultaneously pumping near the two zero-dispersion wavelengths of a specially designed PCF yields a combined visible and infrared supercontinuum spectrum spanning from 0.55 μm to 1.9 μm. We discuss the generation mechanisms underlying the continuum formation in terms of modulation instability and cascaded Raman generation.  相似文献   

13.
Proposed and demonstrated is a simple few components non-contact thickness measurement system for optical quality semi-transparent samples such as Silicon (Si) and 6H Silicon Carbide (SiC) optical chips used for designing sensors. The instrument exploits a hybrid fiber-freespace optical design that enables self-calibrating measurements via the use of confocal imaging via single mode fiber-optics and a self-imaging type optical fiber collimating lens. Data acquisition for fault-tolerant measurements is accomplished via a sufficiently broadband optical source and a tunable laser and relevant wavelength discriminating optics. Accurate sample thickness processing is achieved using the known material dispersion data for the sample and the few (e.g., 5) accurately measured optical power null wavelengths produced via the sample etalon effect. Thicknesses of 281.1 μm and 296 μm are measured for given SiC and Si optical chips, respectively.  相似文献   

14.
We describe the theory of a new method of optical refocusing that is particularly relevant for confocal and multiphoton microscopy systems. This method avoids the spherical aberration that is common to other optical refocusing systems. We show that aberration-free refocusing can be achieved over an axial scan range of 70 μm for a 1.4 NA objective lens. As refocusing is implemented remotely from the specimen, this method enables high axial scan speeds without mechanical interference between the objective lens and the specimen.  相似文献   

15.
We demonstrated in vivo cross-sectional imaging of human fingers by non-mechanical scanning optical coherence tomography (OCT), using a diffracted light as the reference beam and a linear illumination beam at a center wavelength of 1.3 μm for deeper penetration into biological tissues. By applying the three-step phase-shifting method, our system can measure OCT images at 10 frames/s with a sensitivity of 90 dB for a 2.45 × 4.80 mm (axial × lateral) measurement range using an InGaAs digital camera (320 × 256 pixels).  相似文献   

16.
We demonstrate a compact, inexpensive, and reliable fiber-coupled light source with broad bandwidth and sufficient power at 1300 nm for high resolution optical coherence tomography (OCT) imaging in real-time applications. By combining four superluminescent diodes (SLEDs) with different central wavelengths, the light source has a bandwidth of 145 nm centered at 1325 nm with over 10 mW of power. OCT images of an excised stage 30 embryonic chick heart acquired with our combined SLED light source (<5 μm axial resolution in tissue) are compared with images obtained with a single SLED source (∼10 μm axial resolution in tissue). The high resolution OCT system with the combined SLED light source provides better image quality (smaller speckle noise) and a greater ability to observe fine structures in the embryonic heart.  相似文献   

17.
Weiqian Zhao  Jiubin Tan  Lirong Qiu 《Optik》2005,116(3):111-117
In order to further improve the performance of a confocal microscope (CM) used for measurement of surface profiles and 3D microstructures, a shaped annular beam heterodyne confocal measurement method based on annular pupil filter technique and reflection confocal microscopy, is proposed to expand the measurement range and to improve the defocused property of CM. The approach proposed uses a confocal dual-receiving light path arrangement and a heterodyne subtraction of two signals received from detectors with axial offset to enable CM to be used for bipolar absolute measurement and to improve the defocused property of CM, and it uses the annular pupil filter technique to produce a binary optical shaped annular beam, which expands the measurement range by expanding the full-width at half-maximum of intensity curve received from two detectors in a heterodyne confocal microscopy system. Theoretical analyses and experimental results indicate that a shaped annular beam heterodyne microscope has a measurement range expanded from 4 to 14 μm, achieved an axial resolution of 2 nm and improved the defocused property, when ε=0.5 and NA=0.65. It can be therefore concluded that the shaped annular beam heterodyne confocal measuring method proposed is a new approach to ultraprecision measurement of surface profiles and 3D microstructures.  相似文献   

18.
In order to improve the spatial resolution of a confocal system, a radial birefringent pupil filter (RBPF) is introduced into a differential confocal system. RBPF consists of two polarizers with a birefringent element between them, and its pupil function is deduced from Jones matrix. The thickness and curvature radius of RBPF are optimized independently, using the first zero coordinate ratio. The pupil function is modulated by RBPF to enhance the half-width of the response function, and lateral resolution is improved when response curve is changed with the position of RBPF as well as the polarization; then axial super-resolution of the system can be guaranteed using differential confocal detection mechanism. In comparison with conventional pupil filtering technology, RBPF features high lateral resolution and can be easily produced; moreover, it also has a simple structure. Together with its low cost, RBPF provides a new way for the improvement of super-resolution of confocal system. It is indicated from theoretical analysis and preliminary experiments that the lateral resolution can be significantly improved and the measurement error is reduced by 76 nm when measuring a standard grating of period 3 μm; the axial resolution up to 3 nm has been achieved using the optimized pupil filter. In addition to its application for measurement of a small irregular surface in a limited space, the whole differential confocal system proposed can be fitted onto a coordinate measuring machine for non-contact measurement of dimensions and surface roughness.  相似文献   

19.
In order to achieve a higher lateral resolution required for ultraprecision measurement of microstructural workpieces, phase-only pupil filtering differential confocal microscopy (PFDCM), a new approach is proposed based on the differential confocal microscopy (DCM), which uses a three-zone phase-only pupil filter with lateral super-resolution capability obtained through optimized design to change the distribution of DCM three-dimensional point spread function, so that the DCM lateral resolution is therefore significantly improved while its axial resolution is slightly improved. Preliminary experimental comparison and analyses indicate that, the lateral and axial resolutions of PFDCM are better than 0.2 μm and 2 nm, respectively, when wavelength of incidence laser beam , numerical aperture of measuring lens NA=0.85, and lateral spot size with a three-zone phase-only pupil filter GT=0.65. It is therefore concluded that PFDCM is a new approach to further improvement of lateral resolution in laser probe measurement systems.  相似文献   

20.
We demonstrate stimulated emission depletion (STED) microscopy implemented in a laser scanning confocal microscope using excitation light derived from supercontinuum generation in a microstructured optical fiber. Images with resolution improvement beyond the far-field diffraction limit in both the lateral and axial directions were acquired by scanning overlapped excitation and depletion beams in two dimensions using the flying spot scanner of a commercially available laser scanning confocal microscope. The spatial properties of the depletion beam were controlled holographically using a programmable spatial light modulator, which can rapidly change between different STED imaging modes and also compensate for aberrations in the optical path. STED fluorescence lifetime imaging microscopy is demonstrated through the use of time-correlated single photon counting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号