首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of defect states on semiconductor surfaces, at its interfaces with thin films and in semiconductor volumes is usually predetermined by such parameters as semiconductor growth process, surface treatment procedures, passivation, thin film growth kinetics, etc. This paper presents relation between processes leading to formation of defect states and their passivation in Si and GaAs related semiconductors and structures. Special focus is on oxidation kinetics of yttrium stabilized zirconium/SiO2/Si and Sm/GaAs structures. Plasma anodic oxidation of yttrium stabilized zirconium based structures reduced size of polycrystalline silicon blocks localised at thin film/Si interface. Samarium deposited before oxidation on GaAs surface led to elimination of EL2 and/or ELO defects in MOS structures. Consequently, results of successful passivation of deep traps of interface region by CN atomic group using HCN solutions on oxynitride/Si and double oxide layer/Si structures are presented and discussed. By our knowledge, we are presenting for the first time the utilization of X-ray reflectivity method for determination of both density of SiO2 based multilayer structure and corresponding roughnesses (interfaces and surfaces), respectively.  相似文献   

2.
In this report we present grazing incidence X-ray reflectivity (GIXR) study of SiO2/Si(0 0 1) system. We have analysed the X-ray reflectivity data using recursive formalism based on matrix method and distorted wave Born approximation (DWBA). From the analysis of the reflectivity data we could obtain the electron density profile (EDP) at the interface of the dielectric SiO2 film and the Si(0 0 1) substrate. The EDP obtained from the matrix method follows the DWBA scheme only when two transition layers are considered at the interface of SiO2/Si. The layer which is in proximity with the Si substrate has a higher electron density value than the Si and SiO2 values and it appears as a maximum in the EDP. The layer which is in proximity with the dielectric SiO2 layer has an electron density value lower than the SiO2 value and it appears as a minimum in the EDP. When the thickness of the SiO2 layer is increased the lower density layer diminishes and the higher density layer persists.  相似文献   

3.
Highly efficient transparent Zn2SiO4:Mn2+ film phosphors on quartz substrates were deposited by the thermal diffusion of sputtered ZnO:Mn film. They show a textured structure with some preferred orientations. Our film phosphor shows, for the best photoluminescence (PL) brightness, a green PL brightness of about 20% of a commercial Zn2SiO4:Mn2+ powder phosphor screen. The film shows a high transmittance of more than 10% at the red-color region. The excellence in PL brightness and transmittance can be explained in terms of the textured crystal growth with a continuous gradient of Zn2SiO4: Mn2+ crystals.  相似文献   

4.
Titanium dioxide (TiO2) films were fabricated by cosputtering titanium (Ti) target and SiO2 or Si slice with ion-beam-sputtering deposition (IBSD) technique and were postannealed at 450 °C for 6 h. The variations of oxygen bonding, which included high-binding-energy oxygen (HBO), bridging oxygen (BO), low-binding-energy oxygen (LBO), and three chemical states of titanium (Ti4+, Ti3+ and Ti2+) were analyzed by X-ray photoelectron spectroscopy (XPS). The enhancement of HBO and reduction of BO in O 1s spectra as functions of SiO2 or Si amount in cosputtered film imply the formation of Si-O-Ti linkage. Corresponding increase of Ti3+ in Ti 2p spectra further confirmed the property modification of the cosputtered film resulting from the variation of the chemical bonding. An observed correlation between the chemical structure and optical properties, refractive index and extinction coefficient, of the SiO2 or Si cosputtered films demonstrated that the change of chemical bonding in the film results in the modification of optical properties. Furthermore, it was found that the optical properties of the cosputtered films were strongly depended on the cosputtering targets. In case of the Si cosputtered films both the refractive indices and extinction coefficients were reduced after postannealing, however, the opposite trend was observed in SiO2 cosputtered films.  相似文献   

5.
We have used ion-beam mixing to form Si nano-crystals in SiO2 and SiO2/Si multilayers, and applied photoluminescence and soft-X-ray emission spectroscopy to study the nanoparticles. Ion-beam mixing followed by heat treatment at 1100 °C for 2 h forms the Si nanocrystals. The ion-beam-mixed sample shows higher PL intensity than that of a Si-implanted SiO2 film. Photon and electron-excited Si L2,3 X-ray emission measurements were carried out to confirm the formation of Si nanocrystal in SiO2 matrix after ion-beam mixing and heat treatment. It is found that Si L2,3 X-ray emission spectra of ion-beam-mixed Si monolayers in heat-treated SiO2 films lead to noticeable changes in the spectroscopic fine structure. Received: 20 November 1999 / Accepted: 17 April 2000 / Published online: 5 October 2000  相似文献   

6.
The general equation Tove = L cos  θ ln(Rexp/R0 + 1) for the thickness measurement of thin oxide films by X-ray photoelectron spectroscopy (XPS) was applied to a HfO2/SiO2/Si(1 0 0) as a thin hetero-oxide film system with an interfacial oxide layer. The contribution of the thick interfacial SiO2 layer to the thickness of the HfO2 overlayer was counterbalanced by multiplying the ratio between the intensity of Si4+ from a thick SiO2 film and that of Si0 from a Si(1 0 0) substrate to the intensity of Si4+ from the HfO2/SiO2/Si(1 0 0) film. With this approximation, the thickness levels of the HfO2 overlayers showed a small standard deviation of 0.03 nm in a series of HfO2 (2 nm)/SiO2 (2-6 nm)/Si(1 0 0) films. Mutual calibration with XPS and transmission electron microscopy (TEM) was used to verify the thickness of HfO2 overlayers in a series of HfO2 (1-4 nm)/SiO2 (3 nm)/Si(1 0 0) films. From the linear relation between the thickness values derived from XPS and TEM, the effective attenuation length of the photoelectrons and the thickness of the HfO2 overlayer could be determined.  相似文献   

7.
利用射频磁控溅射方法,在n+-Si衬底上淀积SiO2/Si/SiO2纳米双势垒单势阱结构,其中Si层厚度为2至4nm,间隔为0.2nm,邻近n+-S i衬底的SiO2层厚度固定为1.5nm,另一SiO2层厚度固定为3nm.为了 对比研究,还制备了Si层厚度为零的结构,即SiO2(4.5nm)/n+-Si 结构.在经过600℃氮气下退火30min,正面蒸上半透明Au膜,背面也蒸Au作欧姆接触后,所 有样品都在反向偏置(n-Si的电压高于Au电极的电压)下发光,而在正向偏压 下不发光.在一定的反向偏置下,电流和电致发光强度都随Si层厚度的增加而同步振荡,位 相相同.所有样品的电致发光谱都可分解为相对高度不等的中心位于2.26eV(550nm)和1.85eV (670nm)两个高斯型发光峰.分析指出该结构电致发光的机制是:反向偏压下的强电场使Au/( SiO2/Si/SiO2)纳米双势垒/n+-Si结构发生了雪崩击穿 ,产生大量的电子-空穴对,它们在纳米SiO2层中的发光中心(缺陷或杂质)上复 合而发光. 关键词: 电致发光 纳米双势垒 高斯型发光峰 雪崩击穿  相似文献   

8.
唐秋文  沈明荣  方亮 《物理学报》2006,55(3):1346-1350
研究并比较了两种不同(Ba0.5,Sr0.5)TiO3(BSTO)薄膜介电-温度特性.采用脉冲激光沉积技术在Pt/Ti/SiO2/Si(100)衬底上制备BSTO薄膜,发现制备条件的不同,可以得到介电性质完全不同的BSTO薄膜.在550℃和氮气氛下制备的BSTO薄膜在常温下具有很高的介电常数,在10kHz下,超过2500,并在200K温度以上介电常数基本不变.它的一些电学性质不同于在正常条件(650℃和氧气氛下)制得的BSTO薄膜,而类似于目前广泛报道的巨介电常数材料如CaCuTiO12.两种薄膜介电性质测试结果表明: 氧气氛下制备的BSTO薄膜呈现铁电-顺电相变,符合居里-外斯定律;低温氮气氛下制备的BSTO薄膜,介电弛豫时间和温度的关系符合德拜模型,是热激发弛豫.文中给出了产生这种介电特性的初步解释. 关键词: 薄膜 脉冲激光沉积 介电弛豫  相似文献   

9.
Pentacene thin-film transistors (TFTs) were fabricated on thermally grown SiO2 gate insulator under the conditions of various pre-cleaning treatments. Initial nucleation and growth of the material films on treated substrates were observed by atomic force microscope. The performance of fabricated TFT devices with different surface cleaning approaches was found to be highly related to the initial film morphologies. In contrast to the three-dimensional island-like growth mode on SiO2 under an organic cleaning process, a layer-by-layer initial growth occurred on the SiO2 insulator cleaned with ammonia solution, which was believed to be the origination of the excellent electrical properties of the TFT device. Field effect mobility of the TFT device could achieve as high as 1.0 cm2/Vs on the bared SiO2/Si substrate and the on/off ratio was over 106.  相似文献   

10.
Si quantum dots (QDs) embedded in SiO2 can be normally prepared by thermal annealing of SiOx (x < 2) thin film at 1100 °C in an inert gas atmosphere. In this work, the SiOx thin film was firstly subjected to a rapid irradiation of CO2 laser in a dot by dot scanning mode, a process termed as pre-annealing, and then thermally annealed at 1100 °C for 1 h as usual. The photoluminescence (PL) intensity of Si QD was found to be enhanced after such pre-annealing treatment. This PL enhancement is not due to the additional thermal budget offered by laser for phase separation, but attributed to the production of extra nucleation sites for Si dots within SiOx by laser irradiation, which facilitates the formation of extra Si QDs during the subsequent thermal annealing.  相似文献   

11.
This work demonstrates that by combining three methods with different mechanisms to enhance the photoluminescence (PL) intensity of Si nanocrystals embedded in SiO2 (or Si-nc:SiO2), a promising material for developing Si light sources, a very high PL intensity can be achieved. A 30-layered sample of Si-nc:SiO2/SiO2 was prepared by alternatively evaporating SiO and SiO2 onto a Si(1 0 0) substrate followed by thermal annealing at 1100 °C. This multilayered sample possessed a fairly high PL efficiency of 14% as measured by Greenham's method, which was 44 times that of a single-layered one for the same amount of excess Si content. Based on this multilayered sample, treatments of CeF3 doping and hydrogen passivation were subsequently applied, and a high PL intensity which was 167 times that of a single-layered one for the same amount of excess Si content was achieved.  相似文献   

12.
非晶Si/SiO2超晶格结构的交流电致发光   总被引:1,自引:0,他引:1  
《发光学报》2000,21(1):24-27
设计并用磁控溅射方法制备了非晶Si/SiO  相似文献   

13.
0.9 Ge0.1(001)/Si(001) films with SH photon energies 3.1<2hν<3.5 eV near the bulk E1 critical point of Si(001) or Si0.9Ge0.1(001). Ge was deposited on Si(001) by using atomic layer epitaxy cycles with GeH4 or Ge2H6 deposition at 410 K followed by hydrogen desorption. As Ge coverage increased from 0 to 2 monolayers the SH signal increased uniformly by a factor of seven with no detectable shift in the silicon E1 resonant peak position. SH signals from Si0.9Ge0.1(001)/Si(001) were also stronger than those from intrinsic Si(001). Hydrogen termination of the Si0.9Ge0.1(001) and Ge/Si(001) surfaces strongly quenched the SH signals, which is similar to the reported trend on H/Si(001). We attribute the stronger signals from Ge-containingsurfaces to the stronger SH polarizability of asymmetric Ge-Si and Ge-Ge dimers compared to Si-Si dimers. Hydrogen termination symmetrizes all dimers, thus quenching the SH polarizability of all of the surfaces investigated. Received: 13 October 1998 / Revised version: 18 January 1999  相似文献   

14.
Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.  相似文献   

15.
We present results on the magneto-optic properties of ferromagnetic films deposited on GaAs and SiO2 substrates. Using left- and right-circularly polarized light, we have measured the polarization-dependent photoresponse and reflectivity of Co/GaAs, Fe/GaAs and NiFe/GaAs Schottky diodes and the polarization-dependent reflection and transmission of NiFe/SiO2 and Co/SiO2 structures as a function of ferromagnetic film thickness, reported here in the range of 7.5-15 nm. Films were prepared by sputtering and molecular-beam epitaxy. Measurements were made in the presence of magnetic fields ranging from −1.2 to +1.2 T both parallel and perpendicular to the sample surface. We find maximum polarization-dependent transmission and photoresponse effects (with respect to left- versus right-circularly polarized light) of 2-4% in magnitude. Taken together the work suggests that magneto-optic effects intrinsic to the films, rather than spin injection across the ferromagnetic/semiconductor interface, are responsible for the observed phenomenology. The work has direct implications for the interpretation of results in ferromagnetic/semiconductor spintronic systems.  相似文献   

16.
In this work, we consider the exact solution of the stationary cubic nonlinear equation in a semi-infinite nonlinear medium in contact with a one-dimensional photonic crystal. Two kinds of analytical solutions are found for an arbitrary magnitude of the nonlinearity: a standing-wave-like one containing the inverse elliptic function Eli(?m), and a one-wave-type solution for transmitted TE-polarized waves. An approximate two-wave solution is proposed to describe the field propagation through the nonlinear film covering the photonic crystal. It is shown that the problem of a mixed linear-nonlinear structure may be reduced to a transcendental kernel equation determining the field inside the nonlinear part of the medium. The light reflection from a Si/SiO2 layered structure in contact with an optically nonlinear medium is calculated. The angular-frequency photonic band diagram and power dependency are investigated. Local interface waveguide modes are considered.  相似文献   

17.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

18.
SiO2 nanowires gain scientific and technological interest in application fields ranging from nano-electronics, optics and photonics to bio-sensing. Furthermore, the SiO2 nanowires chemical and physical properties, and so their performances in devices, can be enhanced if decorated by metal nanoparticles (such Au) due to local plasmonic effects.In the present paper, we propose a simple, low-cost and high-throughput three-steps methodology for the mass-production of Au nanoparticles coated SiO2 nanowires. It is based on (1) production of the SiO2 nanowires on Si surface by solid state reaction of an Au film with the Si substrate at high temperature; (2) sputtering deposition of Au on the SiO2 nanowires to obtain the nanowires coated by an Au film; and (3) furnace annealing processes to induce the Au film dewetting on the SiO2 nanowires surface. Using scanning electron microscopy analyses, we followed the change of the Au nanoparticles mean versus the annealing time extracting values for the characteristic activation energy of the dewetting process of the Au film on the SiO2 nanowires surface. Such a study can allow the tuning of the nanowires/nanoparticles sizes for desired technological applications.  相似文献   

19.
High-quality ZnO thin films were grown on single-crystalline Al2O3(0001) and amorphous SiO2/Si(100) substrates at 400–640 °C using laser molecular beam epitaxy. For film growth, the third harmonics of a pulsed Nd:YAG laser were illuminated on a ZnO target. The ZnO films were epitaxially grown on Al2O3(0001) with the narrow X-ray diffraction full width at half maximum (FWHM) of 0.04° and the films on SiO2/Si(100) exhibited a preferred c-axis orientation. Furthermore, the films exhibited excellent optical properties in photoluminescence (PL) measurements with very sharp excitonic and weak deep-level emission peaks. At 15 K, PL FWHM values of the films grown on Al2O3(0001) and SiO2/Si(100) were 3 and 18 meV, respectively. Received: 8 May 2001 / Accepted: 18 September 2001 / Published online: 20 December 2001  相似文献   

20.
We have studied the structural, electrical and optical properties of MOS devices, where the dielectric layer consists of a substoichiometric SiOx (x<2) thin film deposited by plasma-enhanced chemical vapor deposition. After deposition the samples were annealed at high temperature (>1000 °C) to induce the separation of the Si and the SiO2 phases with the formation of Si nanocrystals embedded in the insulating matrix. We observed at room temperature a quite intense electroluminescence (EL) signal with a peak at ∼850 nm. The EL peak position is very similar to that observed in photoluminescence in the very same device, demonstrating that the observed EL is due to electron–hole recombination in the Si nanocrystals and not to defects. The effects of the Si concentration in the SiOx layer and of the annealing temperature on the electrical and optical properties of these devices are also reported and discussed. In particular, it is shown that by increasing the Si content in the SiOx layer the operating voltage of the device decreases and the total efficiency of emission increases. These data are reported and their implications discussed. Received: 31 August 2001 / Accepted: 3 September 2001 / Published online: 17 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号