首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1907 Lord Rayleigh published a paper on the dynamic theory of gratings. In this paper he presented a rigorous approach for solving plane wave scattering on periodic surfaces. Moreover he derived explicit expressions for a perfectly conducting sinusoidal surface, and for perpendicular incidence of the electromagnetic plane wave. This paper was criticized by Lippmann in 1953 for he assumed Rayleigh’s approach to be incomplete. Since this time there have been published several arguments, proofs, and discussions concerning the correctness and the range of validity of Rayleigh’s approach not only for plane wave scattering on gratings but also for light scattering on nonspherical structures, in general. In the paper at hand we will discuss the different point of views on what is called “Rayleigh’s hypothesis” as well as the relevance of a found theoretical limit for its validity. Furthermore we present a numerical treatment of the original scattering problem of a p-polarized plane wave perpendicularly incident on a perfectly conducting sinusoidal surface (i.e., the scalar Dirichlet problem). In doing so we emphasizes the near-field solution especially within the grooves of the grating up to points on the surface, and below the surface. Two different Green’s function formulations of Huygens’ principle are used as starting points. One of this formulation results in the general T-matrix approach which is considered to be affected by Rayleigh’s hypothesis especially for near-field calculations. The other formulation provides a conventional boundary integral equation which is in accordance with Lippmann’s point of view and free of problems with Rayleigh’s hypothesis. But the obtained results show that Lippmann’s argumentation do not withstand a critical numerical analysis, and that the independence of least-squares approaches from Rayleigh’s hypothesis, as understood and proven by Millar, seems to hold also for certain methods which does not fit into such an approach.  相似文献   

2.
In a series of former papers, we developed the so-called self-consistent Green’s function formalism (SGFF) for acoustic and light scattering on impenetrable or ideal metallic scatterers. With the paper at hand we will extend the application of this formalism to penetrable or dielectric scatterers. The concept of the Green’s function of the third kind is utilized which was introduced first by Tai. It must be slightly generalized to allow the treatment of nonspherical scatterers. The following considerations reveal the conceptual equivalence between the Green’s function of the third kind and Waterman’s T-matrix method. It is another goal of this paper to demonstrate that the conventional boundary and volume integral equations can be also derived within the developed Green’s function formalism.  相似文献   

3.
This paper completes two previous papers in which we have developed the self-consistent Green’s function formalism for acoustic and light scattering. It is concerned with the unitarity and symmetry properties of the interaction and far field scattering operator of this formalism. We will show that these are primarily mathematical properties, and that the principles of energy conservation and reciprocity, which express our physical experience, can be modeled by these mathematical properties. For this we have to distinguish two experimental configurations, and only one of these configurations will allow us to relate energy conservation to unitarity. Closely related to this are questions concerning the definition and measurability of the scattering quantities and the importance of the optical and generalized optical theorem. These questions will be also discussed from the point of view of the self-consistent Green’s function formalism.  相似文献   

4.
The method of matrix Green’s functions in the classical theory of electromagnetic waves is stated. This method allows to obtain a closed equation system in the presence of the random media for the calculation both coherent, and incoherent (fluctuating) components of radiation. The density and heterogeneity of scattering media can be arbitrary. The coherent channel is calculated independently. The fluctuating radiation distribution in the medium is developed initially by an interference pattern generated by the coherent channel. The limitations of the processes speed are absent. The theory embraces such phenomena as the boson peak, flickering noise, memory effect, backscattering processes and also conventional radiative transfer equation and Fresnel’s formulae.  相似文献   

5.
A Green's function formulation is used to derive basic reciprocity relations for planar radiative transfer in a general medium with internal illumination. Reciprocity (or functional symmetry) allows an explicit and generalized development of the equivalence between source and probability functions. Assuming similar symmetry in three-dimensional space, a general relationship is derived between planar-source intensity and point-source total directional energy. These quantities are expressed in terms of standard (universal) functions associated with the planar medium, while all results are derived from the differential equation of radiative transfer.  相似文献   

6.
On the basis of the Green’s function method for nonequilibrium systems, the kinetic equation for the density matrix of two-level particles used in laser spectroscopy is derived. The assumptions made in deriving the kinetic equation impose certain restrictions on this equation. In the binary approximation, all diagrams are expressed via the reducible vertex part, which can be expressed in terms of the amplitude of scattering of a two-level atom by a buffer gas.  相似文献   

7.
An approach to obtaining the dispersion equation of surface acoustic waves (SAWs) on a stress-free, randomly rough surface of an anisotropic elastic medium is suggested. The problem is solved in the approximation of a weakly rough surface using Green′s function technique. The dispersion and attenuation of sagittally and shear horizontally (SH) polarized SAWs are investigated both analytically and numerically for a three-dimensionally (3D) and a two-dimensionally (2D) rough surface of an isotropic medium. The results for 2D roughness are shown to be contained in the more general expressions for the 3D case, and the connection between the results for the 3D and the 2D cases is pointed out. Dispersion relations are derived for SAWs of both polarizations propagating in an arbitrary direction along a 2D rough surface. The SAW attenuation mechanisms are investigated at various incidence angles. It is concluded that all three mechanisms (viz. scattering into bulk transverse, longitudinal, and Rayleigh surface acoustic waves) are involved for the Rayleigh and SH polarized SAWs at certain incidence angles, whereas at the other angles only some of the mechanisms are. The criterion for the existence of SH polarized SAWs on a rough surface is considered. A possible increase of the SAW phase velocity on a rough surface compared with that for a flat boundary is discussed. In the limit λ a (where a is the roughness correlation length) simple explicit expressions for the phase velocities of Rayleigh and SH polarized SAWs are derived. A comparison of the results obtained herein with those of other workers is presented.  相似文献   

8.
毛义军  祁大同 《物理学报》2009,58(10):6764-6769
推导了在二维和三维空间下开口和封闭薄壳体在任意阻抗边界条件下声辐射和散射的统一边界积分方程.相对于以前的求解方法,该方程求解声辐射和散射问题具有相同的影响矩阵,能够同时求解薄壳体气动和振动噪声的辐射和散射现象,以及分析壳体声阻抗对声波传播的影响.推导的方程可以应用于叶轮机械、管道等噪声和消声器消声性能的预测等方面.在此方程基础上,可以进一步考虑运动边界和运动介质对声辐射和散射的影响. 关键词: 薄壳体 声阻抗 积分方程 边界元方法  相似文献   

9.
Quantum transport models for nanodevices using the non-equilibrium Green’s function method require the repeated calculation of the block tridiagonal part of the Green’s and lesser Green’s function matrices. This problem is related to the calculation of the inverse of a sparse matrix. Because of the large number of times this calculation needs to be performed, this is computationally very expensive even on supercomputers. The classical approach is based on recurrence formulas which cannot be efficiently parallelized. This practically prevents the solution of large problems with hundreds of thousands of atoms. We propose new recurrences for a general class of sparse matrices to calculate Green’s and lesser Green’s function matrices which extend formulas derived by Takahashi and others. We show that these recurrences may lead to a dramatically reduced computational cost because they only require computing a small number of entries of the inverse matrix. Then, we propose a parallelization strategy for block tridiagonal matrices which involves a combination of Schur complement calculations and cyclic reduction. It achieves good scalability even on problems of modest size.  相似文献   

10.
A framework which combines Green’s function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green’s function and stochastic representative solutions of linear drift–diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems – Burgers’ equation and the nonlinear Schrödinger’s equation – are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole–Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger’s vortex sheets. Here, the governing vorticity equation corresponds to the Fokker–Planck equation of an Ornstein–Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the motion and spread of single, multiple, and continuous sets of Burger’s vortex sheets, evolving within deterministic and random strain rate fields, under both viscous and inviscid conditions, are obtained. In order to promote application to other nonlinear problems, a tutorial development of the framework is presented. Likewise, time-incremental solution approaches and construction of approximate, though otherwise difficult-to-obtain backward-time GF’s (useful in solution of forward-time evolution problems) are discussed.  相似文献   

11.
The Green’s function of the electric field of plasmons is determined in a semi-infinite medium with an abrupt plasma boundary where nonequilibrium conduction electrons either undergo elastic reflection from the boundary or “stick” to it and give rise to a stationary surface charge. The angular reflection of elastically scattered electrons can be either specular or diffuse. The Green’s function is used to find the singleevent spectrum of energy loss by a fast electron moving parallel to the boundary. The effect of electronboundary scattering parameters on the structure of bulk and surface plasmon resonances is analyzed. The probability of transition radiation of bulk plasmon by an electron moving in vacuum is examined. A new type of surface resonance is found under conditions of perfectly elastic scattering of conduction electrons from the plasma boundary, similar in structure to a tangential surface plasmon.  相似文献   

12.
We have derived closed analytic expressions for the Green’s function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green’s functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green’s function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of the Green’s function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green’s function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems.  相似文献   

13.
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green’s function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.  相似文献   

14.
In this study, we extend a fully exact Green’s function formalism to calculate the phonon transmission coefficient in a short simulated chain. We obtain new analytical formulas for a uniform-mass and periodic-mass chain. The results for a simple chain show that the resonance peak will be appeared without gap but for the periodic chain the transmission coefficient contains a gap in the acoustic band of leads.  相似文献   

15.
In this paper, we consider band structure calculations governed by the Helmholtz or Maxwell equations in piecewise homogeneous periodic materials. Methods based on boundary integral equations are natural in this context, since they discretize the interface alone and can achieve high order accuracy in complicated geometries. In order to handle the quasi-periodic conditions which are imposed on the unit cell, the free-space Green’s function is typically replaced by its quasi-periodic cousin. Unfortunately, the quasi-periodic Green’s function diverges for families of parameter values that correspond to resonances of the empty unit cell. Here, we bypass this problem by means of a new integral representation that relies on the free-space Green’s function alone, adding auxiliary layer potentials on the boundary of the unit cell itself. An important aspect of our method is that by carefully including a few neighboring images, the densities may be kept smooth and convergence rapid. This framework results in an integral equation of the second kind, avoids spurious resonances, and achieves spectral accuracy. Because of our image structure, inclusions which intersect the unit cell walls may be handled easily and automatically. Our approach is compatible with fast-multipole acceleration, generalizes easily to three dimensions, and avoids the complication of divergent lattice sums.  相似文献   

16.
A Fermi-type Green’s function method has been used to investigate the phase transition properties of a ferroelectric superlattice with two alternating materials on the basis of the transverse Ising model. By performing a higher-order decoupling to the equations of motion for the Green’s functions, the eigenfrequencies of the infinite ferroelectric superlattice are obtained. Moreover, we discuss the dependence of the phase diagrams on the interface coupling strength, the transverse field, and the thicknesses of two slabs. The comparison between the Green’s function technique and the usual mean-field approximation is illustrated.  相似文献   

17.
This study deals with the development of the approximate method to analyze the sound field around equally spaced finite obstacles, using the periodic boundary condition. First, on the assumption that the equally spaced finite obstacles are the periodically arranged obstacles, the sound field is analyzed by boundary integral equation method with a Green’s function which satisfies the periodic boundary condition. Furthermore, by comparing these results and the exact solution by using the fundamental solution as Green’s function, the validity of the approximate method is also investigated. Next, in order to evaluate the applicability of the approximate method, the simple formula using some parameters, i.e., the frequency, the period, and the number of obstacles, etc., is proposed. The results of the sound field analysis applied the formula are presented.  相似文献   

18.
It is shown that the exact solution of transfer problems of polarized light in finite slab atmospheres can be obtained from an eigenmode expansion, if there is a known set of adjoints defined appropriately to treat two-point, half-range boundary-value problems. The adjoints must obey a half-range biorthogonality relation.The adjoints are obtained in terms of Case's eigenvectors and the reflection or the transmission matrices. Half-range characteristic equations for the eigenvectors and their adjoints are derived, where the kernel functions of the integral operators are given by the boundary values of the source function matrix of the slab albedo problem. Spectral formulae are obtained for the surface Green's functions. A relationship is noted between the biorthogonality concept and some half-range forms of the transfer equation for the surface Green's functions and their adjoints. Linear and non-linear functional equations that are well known from an invariance approach, are derived from a new point of view. The biorthogonality concept offers the opportunity for a better understanding of mathematical structures and the nonuniqueness problem for solutions of such functional equations.  相似文献   

19.
曾伦武  张浩  唐中良  宋润霞 《物理学报》2012,61(17):177303-177303
利用麦克斯韦方程组,用球矢量波函数展开了长椭球坐标系中的电磁场分量; 根据拓扑绝缘体的本构关系,修正了椭球内外的电磁场;利用拓扑绝缘体的边界条件, 推导了散射系数和散射电磁场.模拟结果表明:当时间反演对称打破时,拓扑磁电参数对散射截面有明显影响.  相似文献   

20.
This article presents a numerical study of dispersion characteristics of some symmetric and antisymmetric composites modelled as multilayered packets of layers with arbitrary anisotropy of each layer. The authors introduce a subsidiary boundary problem of three-dimensional elasticity theory for the system of partial differential equations describing the harmonic oscillations of the composite caused by a surface load. The problem reduces to a boundary problem for ordinary differential equations by employing the Fourier transform. An algorithm of constructing the Fourier transform of the Green’s matrix of the given boundary problem is presented. The wave numbers of Lamb waves propagating in composites, their phase velocity surfaces and group wave surfaces are presented through the poles of the transform of the Green’s matrix. The authors obtain the dispersion curves for different directions and frequencies and investigate the dispersion curves and surfaces of wave numbers, phase velocities and group wave surfaces for various composites. The numerical results are then compared with the results obtained by applying other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号