首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A pseudo-spectral algorithm is presented for the solution of the rotating Green–Naghdi shallow water equations in two spatial dimensions. The equations are first written in vorticity–divergence form, in order to exploit the fact that time-derivatives then appear implicitly in the divergence equation only. A nonlinear equation must then be solved at each time-step in order to determine the divergence tendency. The nonlinear equation is solved by means of a simultaneous iteration in spectral space to determine each Fourier component. The key to the rapid convergence of the iteration is the use of a good initial guess for the divergence tendency, which is obtained from polynomial extrapolation of the solution obtained at previous time-levels. The algorithm is therefore best suited to be used with a standard multi-step time-stepping scheme (e.g. leap-frog).  相似文献   

3.
This study deals with the development of the approximate method to analyze the sound field around equally spaced finite obstacles, using the periodic boundary condition. First, on the assumption that the equally spaced finite obstacles are the periodically arranged obstacles, the sound field is analyzed by boundary integral equation method with a Green’s function which satisfies the periodic boundary condition. Furthermore, by comparing these results and the exact solution by using the fundamental solution as Green’s function, the validity of the approximate method is also investigated. Next, in order to evaluate the applicability of the approximate method, the simple formula using some parameters, i.e., the frequency, the period, and the number of obstacles, etc., is proposed. The results of the sound field analysis applied the formula are presented.  相似文献   

4.
Explicit symmetry relations for the Green’s function subject to homogeneous boundary conditions are derived for arbitrary linear differential or integral equation problems in which the boundary surface has a set of symmetry elements. For corresponding homogeneous problems subject to inhomogeneous boundary conditions implicit symmetry relations involving the Green’s function are obtained. The usefulness of these symmetry relations is illustrated by means of a recently developed self-consistent Green’s function formalism of electromagnetic and acoustic scattering problems applied to the exterior scattering problem. One obtains explicit symmetry relations for the volume Green’s function, the surface Green’s function, and the interaction operator, and the respective symmetry relations are shown to be equivalent. This allows us to treat boundary symmetries of volume-integral equation methods, boundary-integral equation methods, and the T matrix formulation of acoustic and electromagnetic scattering under a common theoretical framework. By specifying a specific expansion basis the coordinate-free symmetry relations of, e.g., the surface Green’s function can be brought into the form of explicit symmetry relations of its expansion coefficient matrix. For the specific choice of radiating spherical wave functions the approach is illustrated by deriving unitary reducible representations of non-cubic finite point groups in this basis, and by deriving the corresponding explicit symmetry relations of the coefficient matrix. The reducible representations can be reduced by group-theoretical techniques, thus bringing the coefficient matrix into block-diagonal form, which can greatly reduce ill-conditioning problems in numerical applications.  相似文献   

5.
6.
In this paper, we conduct a study of quantum transport models for a two-dimensional nano-size double gate (DG) MOSFET using two approaches: non-equilibrium Green’s function (NEGF) and Wigner distribution. Both methods are implemented in the framework of the mode space methodology where the electron confinements below the gates are pre-calculated to produce subbands along the vertical direction of the device while the transport along the horizontal channel direction is described by either approach. Each approach handles the open quantum system along the transport direction in a different manner. The NEGF treats the open boundaries with boundary self-energy defined by a Dirichlet to Neumann mapping, which ensures non-reflection at the device boundaries for electron waves leaving the quantum device active region. On the other hand, the Wigner equation method imposes an inflow boundary treatment for the Wigner distribution, which in contrast ensures non-reflection at the boundaries for free electron waves entering the device active region. In both cases the space-charge effect is accounted for by a self-consistent coupling with a Poisson equation. Our goals are to study how the device boundaries are treated in both transport models affects the current calculations, and to investigate the performance of both approaches in modeling the DG-MOSFET. Numerical results show mostly consistent quantum transport characteristics of the DG-MOSFET using both methods, though with higher transport current for the Wigner equation method, and also provide the current–voltage (IV) curve dependence on various physical parameters such as the gate voltage and the oxide thickness.  相似文献   

7.
The accuracy of the Green’s function parabolic equation (GFPE) has already been confirmed for outdoor sound propagation over flat ground with a slowly varying sound speed profile and/or atmospheric turbulence. However, use of parabolic equation methods for prediction is generally limited to experts because of their dependence on numerous algorithm parameters that have significant impact on the accuracy of prediction. The present work offers a set of GFPE parameters, outlined in Table 1, that will provide accurate results for a variety of physical situations involving atmospheric propagation. The guidelines are found by comparing GFPE results to analytical results for a variety of situations and parameter choices and noting which combinations of parameters lead to accurate (within 3 dB of the analytical solution) results and which do not. A significant source of error in GFPE results is inaccuracy in the starting field or inappropriate starting field selection. The selection criteria for starting field and other parameters are discussed here.  相似文献   

8.
Pell’s equation is x2dy2=1, where d is a square-free integer and we seek positive integer solutions x,y>0. Let (x0,y0) be the smallest solution (i.e., having smallest ). Lagrange showed that every solution can easily be constructed from A so given d it suffices to compute A. It is known that A can be exponentially large in d so just to write down A we need exponential time in the input size . Hence we introduce the regulator R=lnA and ask for the value of R to n decimal places. The best known classical algorithm has sub-exponential running time . Hallgren’s quantum algorithm gives the result in polynomial time with probability . The idea of the algorithm falls into two parts: using the formalism of algebraic number theory we convert the problem of solving Pell’s equation into the problem of determining R as the period of a function on the real numbers. Then we generalise the quantum Fourier transform period finding algorithm to work in this situation of an irrational period on the (not finitely generated) abelian group of real numbers. This paper is intended to be accessible to a reader having no prior acquaintance with algebraic number theory; we give a self-contained account of all the necessary concepts and we give elementary proofs of all the results needed. Then we go on to describe Hallgren’s generalisation of the quantum period finding algorithm, which provides the efficient computational solution of Pell’s equation in the above sense.  相似文献   

9.
The dynamics of nonlinear pulse propagation in an average dispersion-managed soliton system is governed by a constant coefficient nonlinear Schrödinger (NLS) equation. For a special set of parameters the constant coefficient NLS equation is completely integrable. The same constant coefficient NLS equation is also applicable to optical fiber systems with phase modulation or pulse compression. We also investigate MI arising in the cubic-quintic nonlinear Schrödinger equation for ultrashort pulse propagation. Within this framework, we derive ordinary differential equations (ODE’s) for the time evolution of the amplitude and phase of modulation perturbations. Analyzing the ensuing ODE’s, we derive the classical modulational instability criterion and identify it numerically. We show that the quintic nonlinearity can be essential for the stability of solutions. The evolutions of modulational instability are numerically investigated and the effects of the quintic nonlinearity on the evolutions are examined. Numerical simulations demonstrate the validity of the analytical predictions.  相似文献   

10.
A Fermi-type Green’s function method has been used to investigate the phase transition properties of a ferroelectric superlattice with two alternating materials on the basis of the transverse Ising model. By performing a higher-order decoupling to the equations of motion for the Green’s functions, the eigenfrequencies of the infinite ferroelectric superlattice are obtained. Moreover, we discuss the dependence of the phase diagrams on the interface coupling strength, the transverse field, and the thicknesses of two slabs. The comparison between the Green’s function technique and the usual mean-field approximation is illustrated.  相似文献   

11.
12.
We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.  相似文献   

13.
We try to derive some explicit equations for predicting the laws which govern the evolution of different parameters of a propagating optical pulse in a nonlinear medium under the combined influence of two-photon absorption and gain dispersion. Using the generalized Euler-Lagrange equation, the dynamics of different pulse parameters are generated. The Rayleigh’s dissipation function is incorporated in order to take recourse to the dissipative part, with an analogy with the non-conservative frictional problem in classical mechanics. It appears from the study that the influence of the dissipative part can well be explained using the proposed model. The analytically predicted results are compared with the numerical data obtained from direct simulation of the Ginzburg-Landau equation and the results are found to be quite satisfactory, supporting the prediction.  相似文献   

14.
We explicitly compute the Green’s function of the spinor Klein–Gordon equation on the Riemannian and Lorentzian manifolds of the form M0×?×MNM0×?×MN, with each factor being a space of constant sectional curvature. Our approach is based on an extension of the method of spherical means to the case of spinor fields and on the use of Riesz distributions.  相似文献   

15.
Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this Letter; one is He's variational iteration method (VIM) and the other is the homotopy–perturbation method (HPM). Nonlinear convective–radiative cooling equations are used as examples to illustrate the simple solution procedures. These methods are useful and practical for solving the nonlinear heat diffusion equation, which is associated with variable thermal conductivity condition. Comparison of the results obtained by both methods with exact solutions reveals that both methods are tremendously effective.  相似文献   

16.
Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV–mKdV equation are chosen to illustrate the effectiveness of the method.  相似文献   

17.
The effect of molecular orientation on the electron transport behavior of single porphyrin sandwiched between two gold (111) electrodes is investigated by density functional theory calculations combined with non-equilibrium Green’s function method. The results show that the porphyrin with parallel connection to gold (111) electrodes is more conductive than the porphyrin with diagonal connection to gold (111) electrodes. The mechanism of the difference of electron transport for these two molecular junctions is analyzed from the transmission spectra and the molecular projected self-consistent Hamiltonian states. It is found that the intrinsic nature of the molecule, such as the π-conjugated framework and the strength of molecule–electrode coupling, are the essential reason for generating this difference of electron transport for the two molecular systems.  相似文献   

18.
Based on the dynamic equations of nonlinear large deflection of axisymmetric shallow shells of revolution, the nonlinear free vibration and forced vibration of a corrugated shallow shell under concentrated load acting at the center have been investigated. The nonlinear partial differential equations of shallow shell were reduced to the nonlinear integral-differential equations by using the method of Green’s function. To solve the integral-differential equations, the expansion method was used to obtain Green’s function. Then the integral-differential equations were reduced to the form with a degenerate core by expanding Green’s function as a series of characteristic function. Therefore, the integral-differential equations became nonlinear ordinary differential equations with regard to time. The amplitude-frequency relation, with respect to the natural frequency of the lowest order and the amplitude-frequency response under harmonic force, were obtained by considering single mode vibration. As a numerical example, nonlinear free and forced vibration phenomena of shallow spherical shells with sinusoidal corrugation were studied. The obtained solutions are available for reference to the design of corrugated shells.  相似文献   

19.
We suggest a linear nonconforming triangular element for Maxwell’s equations and test it in the context of the vector Helmholtz equation. The element uses discontinuous normal fields and tangential fields with continuity at the midpoint of the element sides, an approximation related to the Crouzeix–Raviart element for Stokes. The element is stabilized using the jump of the tangential fields, giving us a free parameter to decide. We give dispersion relations for different stability parameters and give some numerical examples, where the results converge quadratically with the mesh size for problems with smooth boundaries. The proposed element is free from spurious solutions and, for cavity eigenvalue problems, the eigenfrequencies that correspond to well-resolved eigenmodes are reproduced with the correct multiplicity.  相似文献   

20.
Here, an analytic technique, namely the homotopy analysis method (HAM), is applied to solve a generalized Hirota–Satsuma coupled KdV equation. HAM is a strong and easy-to-use analytic tool for nonlinear problems and dose not need small parameters in the equations. Comparison of the results with those of Adomian's decomposition method (ADM) and homotopy perturbation method (HPM), has led us to significant consequences. The homotopy analysis method contains the auxiliary parameter ?, which provides us with a simple way to adjust and control the convergence region of solution series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号