首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a new kind of electrochemical molecular beacon, termed “electrochemically active–inactive switching molecular beacon”, for direct detection of DNA in homogenous solution. The electrochemical molecular beacon consists of a stable stem-loop oligonucleotide carrying two carminic acid moieties (acting as electrochemical reporter) attached at its termini. In a close form, the electrochemical signal is quenched because two carminic acid moieties are close enough to associate into dimer. In the presence of the complementary DNA target, the electrochemical molecular beacon undergoes a conformational transformation from closed (hairpin) to open (linear) structure, which is associated with an increase in electrochemical signal. We found that the electrochemical molecular beacon is as effective as conventional molecular beacon in signaling the presence of complementary target and discriminating targets that differ by a single nucleotide. The proposed electrochemical molecular beacon has a great potential for investigating the interactions of DNA-protein and developing electrochemical real-time polymerase chain reaction.  相似文献   

2.
电化学免疫分析法研究进展   总被引:27,自引:8,他引:27  
焦奎  张敏 《分析化学》1995,23(10):1211-1217
电化学免疫分析法是将免疫分析与电化学分析技术相结合的一种免疫分析新方法,近十多年来,电化免疫分析的研究有了迅速的发展。本文对电化学的免疫分析法的标记物、免疫方法、电化学检测技术进行了概括总结,并展望了电化学免疫分析的发展前景。  相似文献   

3.
This document treats performance parameters in electrochemical engineering. Nomenclature and definitions for electrochemical engineering together with the respective symbols are given. Parameters to account for electrochemical reactions in electrolysis as well as for electrochemical power sources (electrochemical energy generators) are included in this document.  相似文献   

4.
Chen G 《Talanta》2007,74(3):326-332
As two important polymorphs of carbon, carbon nanotube (CNT) and diamond have been widely employed as electrode materials for electrochemical sensing. This review focuses on recent advances and the key strategies in the fabrication and application of electrochemical detectors in microchip and conventional capillary electrophoresis (CE) using CNT and boron-doped diamond. The subjects covered include CNT-based electrochemical detectors in microchip CE, CNT-based electrochemical detectors in conventional CE, boron-doped diamond electrochemical detectors in microchip CE, and boron-doped diamond electrochemical detectors in conventional CE. The attractive properties of CNT and boron-doped diamond make them very promising materials for the electrochemical detection in microchip and conventional CE systems and other microfluidic analysis systems.  相似文献   

5.
Electrochemical biosensors have attracted much attention in mycotoxin bioanalysis. In this review, three electrochemical biosensor technologies for mycotoxins were reviewed, including general electrochemistry, photoelectrochemistry, and electrochemiluminescence. Based on the classification of multiple electrochemical detection methods, the design schemes, recognition mechanism and probe materials were described in detail. Moreover, the characteristics and limitations of these electrochemical biosensors were summarized. The challenges and future trends of electrochemical biosensor development in mycotoxin bioanalysis were also briefly discussed in the end. This review is expected to provide some inspirations for point-of-care testing in electrochemical sensors for mycotoxins and further electrochemical analysis application.  相似文献   

6.
电化学聚合   总被引:4,自引:0,他引:4  
廖川平 《化学通报》2000,63(2):37-41
介绍了电化学聚合反应的定义、分类,机理和应用,阐述了电化学缩合反应的电化学加成聚合反应这两大类电化学聚合反应的本质差别,另外还提出了电化学氰基加成聚合反应的概念。  相似文献   

7.
Electroanalysis has obtained considerable progress over the past few years, especially in the field of electrochemical sensors. Broadly speaking, electrochemical sensors include not only conventional electrochemical biosensors or non-biosensors, but also emerging electrochemiluminescence (ECL) sensors and photoelectrochemical (PEC) sensors which are both combined with optical methods. In addition, various electrochemical sensing devices have been developed for practical purposes, such as multiplexed simultaneous detection of disease-related biomarkers and non-invasive body fluid monitoring. For the further performance improvement of electrochemical sensors, material is crucial. Recent years, a kind of two-dimensional (2D) nanomaterial MXene containing transition metal carbides, nitrides and carbonitrides, with unique structural, mechanical, electronic, optical, and thermal properties, have attracted a lot of attention form analytical chemists, and widely applied in electrochemical sensors. Here, we reviewed electrochemical sensors based on MXene from Nov. 2014 (when the first work about electrochemical sensor based on MXene published) to Mar. 2021, dividing them into different types as electrochemical biosensors, electrochemical non-biosensors, electrochemiluminescence sensors, photoelectrochemical sensors and flexible sensors. We believe this review will be of help to those who want to design or develop electrochemical sensors based on MXene, hoping new inspirations could be sparked.  相似文献   

8.
Nyholm L 《The Analyst》2005,130(5):599-605
During the last few years there has been a rapid increase in the use of electrochemical reactions in lab-on-a-chip devices. This development, which has so far mainly focussed on electrochemical detection in chip-based capillary electrophoresis, can be explained by the fact that electrochemical techniques and devices are particularly well-suited for inclusion in lab-on-a-chip systems. The most important reason for this is that the required electrodes can readily be manufactured and miniaturised without loss of analytical performance using conventional microfabrication methods. In this Research Highlight article, the developments during the last three years concerning electrochemical techniques for lab on-a-chip applications are discussed, with particular focus on emerging electrochemical methods for sample clean-up and preconcentration, electrochemical derivatisation and electrochemical detection in chip-based capillary electrophoresis.  相似文献   

9.
贾铮 《化学通报》2005,68(2):106-110,134
组合电化学是一种新的电化学研究策略,通过设计和构建大量多样性的电极阵列,并对其进行高通量筛选和表征,快速、高效地实现了体系的电化学研究。本文综述了近年来进行的组合电化学研究,重点介绍了组合光学筛选方法、组合电化学合成方法以及电化学平行筛选方法,并探讨了各种方法的优势和存在的问题。  相似文献   

10.
Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real‐time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching‐free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.  相似文献   

11.
由于个体的差异性和异质性作用,整体平均测量掩盖了个体的本征性质和电化学性能之间的关联.单体碰撞电化学作为一种强大而方便的电化学方法,已被用于研究超微电极上自由扩散的单个个体随机碰撞过程中的电化学行为.然而,个体的动态行为与其电化学反应过程息息相关.因此,对于单体动态电化学行为的研究可实时获取单体在电极界面上的动态电化学反应信息,也将有助于理解电极界面电荷或电子的动态转移过程.本文重点围绕单体动态电化学行为的研究,通过单个纳米颗粒在电极表面碰撞事件中产生的瞬时电流响应追踪其动态电化学反应过程,进而推广到其他单体动态电化学行为的研究.同时,单体电化学方法结合光学显微成像技术作为高时空分辨的研究手段提供了充分信息全面地反映了单个实体的动态电化学反应动力学过程和反应机制,最后讨论了该领域面临的科学挑战并展望了未来的研究方向.  相似文献   

12.
结合实际发展电化学科学─—武汉大学电化学研究室工作简介查全性,陆君涛(武汉大学化学系电化学研究室,武汉430072)在物理化学的众多分支学科中,电化学长期保持良好的发展势头。除了电化学所研究的体系(溶液、电极/溶液界面等)具有广泛的基础意义外,促使电...  相似文献   

13.
In most graphene‐based electrochemical applications, graphene nanoplatelets (GNPs) have been applied. Now, for the first time, electrochemical properties of GNPs, namely, its electrochemical activity, potential window, and double‐layer capacitance, have been investigated. These properties are compared with those of carbon nanotubes (CNTs). GNP‐ and CNT‐coated electrodes were then applied for electrochemical oxidation of endocrine‐disrupting chemicals. The GNP‐coated electrode was characterized by atomic force microscopy and electrochemical techniques. Compared with the CNT‐coated electrode, higher peak current for the oxidation of 4‐nonylphenol is achieved on the GNP‐coated electrode, together with lower capacitive current. Electrochemical oxidation of 2,4‐dichlorophenol, bisphenol A, and octylphenol in the absence or presence of 4‐nonylphenol was studied on the GNP‐coated electrode. The results suggest that GNPs have better electrochemical performance than CNTs and are thus more promising for electrochemical applications, for example, electrochemical detection and removal of endocrine‐disrupting chemicals.  相似文献   

14.
It is proved that there is a general stochastic equation, according to which any random process in the transient mode can be presented by spatially homogeneous Kramers-Moyal expansion. In the electrochemical stochastic diffusion, an integral of the fluctuation component of electrode potential over the time plays the role of spatial coordinate. Based on these two facts, we derived a spatially homogeneous Kramers-Moyal expansion for the propagator of electrochemical stochastic diffusion. By using the limiting transition to long observation times, we obtained a time and spatially homogeneous asymptotic Kramers-Moyal expansion for the propagator of asymmetric non-Gaussian electrochemical stochastic diffusion. Under the conditions of Gaussian electrochemical noise, the asymptotic Kramers-Moyal expansion turns into the Einstein stochastic diffusion equation. The method of determining time and spatially homogeneous asymptotic Kramers-Moyal expansion for the propagator of asymmetric non-Gaussian electrochemical stochastic diffusion may be useful in the stochastic theory of slow electrochemical discharge and in the electrochemical noise diagnostics.  相似文献   

15.
电化学石英晶体微天平(EQCM)同时结合了电化学检测的高灵敏度和石英晶体微天平(QCM)可实时检测电极表面质量变化及阻尼的特点,在电化学研究中具有非常好的应用前景,已得到越来越广泛的应用.本文设计了一种通用型的EQCM电解池,用恒电流电沉积铜的方法测定了QCM Pt电极的质量灵敏因子Cf,分析了Cf实验测定值与理论值偏差的原因,并讨论了在所设计的EQCM电解池中QCM Pt电极的使用范围,为进一步开展EQCM的应用研究提供可靠的基础.  相似文献   

16.
电化学生物传感器在环境监测中的应用及发展前景   总被引:1,自引:0,他引:1  
简要介绍了电化学生物传感器的工作原理,重点论述了电化学生物传感器在环境监测领域的应用及其研究进展,主要包括水环境污染物和大气污染物的监测,以及农药残留的监测等.同时,对电化学生物传感器的发展方向及前景进行了展望.  相似文献   

17.
空间分辨电化学技术用于研究金属局部腐蚀   总被引:2,自引:0,他引:2  
林昌健 《电化学》1999,5(1):25-30
综合介绍我们已建立的具有微米空间分辨度的电化学方法,主要包括多种扫描微电极技术,并用于研究金属表面和金属/溶液界面电化学不均一性及局部腐蚀破坏过程。结果表明,这些空间分辨电化学方法的发展及应用,有助于深化对金属表面和金属/溶液界面电化学不均一性,特别是金属局部腐蚀发生、发展过程机理的认识。  相似文献   

18.
原位电化学拉曼光谱是一种重要的光谱电化学技术.基于超微电极的原位电化学拉曼光谱将拉曼光谱反映的结构信息与电极表面的电化学过程从实验上严格对应和关联,为深刻理解电化学反应机理提供依据.本文综述了采用超微电极作为工作电极的原位电化学拉曼光谱的研究方法和应用进展,总结了应用超微电极作为工作电极开展电化学拉曼光谱实验的方法和具有表面增强拉曼活性的超微电极制备方法,展示了如何利用在超微电极表面获得的拉曼光谱与界面电化学过程的严格关联研究单个锌颗粒电化学氧化过程、吡啶分子在Au电极表面的电化学吸附过程,以及如何利用该技术能以高的信噪比和灵敏度同时测量光电流与分子反应这一特性研究对巯基苯胺选择性光氧化反应.采用超微电极作为工作电极的原位电化学拉曼光谱技术极大拓展了拉曼光谱技术的研究范围,有望成为探索(光)电化学反应的有力工具.  相似文献   

19.
Abstract— Excited molecules can exchange electrons with suitable electrodes in an electrochemical cell. Excitation energy of molecules can therefore be converted into electrochemical energy. Electrochemical reactions of excited chlorophyll molecules have been investigated with the help of semiconductor electrodes. It is suggested that this type of reaction also occurs during the primary steps of photosynthesis. Consequently, concepts of electrochemical kinetics would have to be applied in order to elucidate chlorophyll-sensitized reactions in photosynthetic membranes. In order to provide evidence for this conclusion, electrochemical kinetics is applied to the calculation of decay of delayed light from photosynthetic membranes, and the result is compared with experimental data from Chlorella pyrenoidosa. The conversion of light into electrochemical energy via photoelectrochemical reactions of organic dyes in an electrochemical cell is demonstrated, and the postulated analogous electrochemical mechanism for photosynthesis is discussed.  相似文献   

20.
Studies carried out in the past two years on electrochemical fixation of carbon dioxide with carbon-carbon bond formation, so-called electrochemical carboxylation or electrocarboxylation, are reviewed. Among about twenty papers on electrochemical carboxylation published from 2014 to the present, recent advances in electrochemical carboxylation regarding asymmetric carboxylation, sacrificial anode-free carboxylation, and carboxylation following aryl radical cyclization are focused on and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号