首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The existence of the antibonding ground state of holes in artificial molecules, which are formed by the vertically coupled Ge/Si quantum dots, has been proved experimentally. This phenomenon is absent in natural molecules and double quantum dots containing electrons. It is a consequence of spin-orbit interaction and deformation effects in the valence band of vertically aligned quantum dots.  相似文献   

2.
We describe hidden symmetry and its application to the construction of exact correlated states of electrons and holes in quantum dots. The hidden symmetry is related to degenerate single particle energy shells and symmetric interactions. Both can be engineered in a quantum dot. We focus on hidden symmetry involving spin singlet pairing of electrons and spin singlet pairing of holes. Detailed calculations for a third shell are presented to illustrate the mechanism of pairing.  相似文献   

3.
汤乃云 《物理学报》2013,62(5):57301-057301
本文采用六带K·P理论计算了耦合量子点在不同耦合距离下空穴基态特性, 探讨了轻重空穴及轨道自旋相互作用对耦合量子点空穴基态反成键态特性的影响. 在考虑多带耦合的情况下, 耦合量子点随着耦合强度的变化, 价带基态能级和激发态能级发生反交叉现象. 同时, 随着耦合距离的增加, 量子点基态轻重空穴波函数的比重发生变化,导致量子点空穴基态波函数从成键态反转成为反成键态. 同时研究发现, 因空穴基态及激发态波函数特性的转变, 电子、空穴的基态及激发态波函数的叠加强度发生的明显变化. 关键词: 耦合量子点 反键态 多带理论 自旋轨道耦合  相似文献   

4.
The influence of the thickness of ZnTe barrier layers on the cathodoluminescence spectra of strained CdTe/ZnTe superlattices containing layers of quantum dots with an average lateral size of approximately 3 nm has been investigated. In samples with thick barrier layers (30, 15 nm), the cathodoluminescence spectra of quantum dots exhibit one band with a maximum at E = 2.03 eV. It has been revealed that, at a barrier layer thickness of ∼3 nm, the luminescence band is split. However, at a ZnTe layer thickness of 1.5 nm, the luminescence spectrum also contains one band. The experimental results have been interpreted with allowance made for the influence of elastic biaxial strains on the energy states of light and heavy holes in the CdTe and ZnTe layers. For the CdTe/ZnTe heterostructure with quantum dots in which the thickness of the deposited CdTe layer is 1.5 monolayers and the thickness of the barrier layer is 100 monolayers, the cathodoluminescence spectrum contains 2LO-phonon replicas. This effect has been explained by the resonance between two-phonon LO states and the difference between the energy states in the electronic spectrum of wetting layer fragments.  相似文献   

5.
Based on the nonequilibrium Green' function method, the spin-dependent Fano effect through parallel-coupled double quantum dots has been investigated by taking account of both Rashba spin-orbit interaction and intradot Coulomb interaction. It is shown that the quantum interference through the bonding, antibonding states and through their Coulomb blockade counterparts may result in two Breit-Wigner resonances and two Fano resonances in the conductance spectra. Moreover, the Fano lineshape of the two spin components can be modulated by Rashba spin-orbit interaction when the magnetic flux is switched on.  相似文献   

6.
徐靖  陈鸿  章豫梅  冯伟国 《物理学报》2000,49(8):1550-1555
用玻色化技术和量子自洽方法研究了spin-Peierls系统的低能量激发谱,计算了二聚化相的基态、单粒子激发态和双粒子束缚态的能量、阻挫对其低能量行为的影响及其各自的自旋-自旋关联函数.结果表明,随着阻挫的增大,spin-Peierls系统中的基态能会逐渐减小,单粒子激发态能隙和双粒子束缚态能隙却会增大.双粒子束缚态和基态的关联函数具有类似的短程关联,而单粒子激发态的关联函数具有长程关联.因此导出,单粒子激发态为自旋三重态,双粒子束缚态与基态类似为自旋单态,它存在于双粒子连续激发态的下边.该结果与Ain等 关键词: spin-Peierls系统 束缚态 关联函数  相似文献   

7.
Double quantum dots offer unique possibilities for the study of many-body correlations. A system containing one Kondo dot and one effectively noninteracting dot maps onto a single-impurity Anderson model with a structured (nonconstant) density of states. Numerical renormalization-group calculations show that, while band filtering through the resonant dot splits the Kondo resonance, the singlet ground state is robust. The system can also be continuously tuned to create a pseudogapped density of states and access a quantum-critical point separating Kondo and non-Kondo phases.  相似文献   

8.
We analyze a Hanbury Brown-Twiss geometry in which particles are injected from two independent sources into a mesoscopic conductor in the quantum Hall regime. All partial waves end in different reservoirs without generating any single-particle interference; in particular, there is no single-particle Aharonov-Bohm effect. However, exchange effects lead to two-particle Aharonov-Bohm oscillations in the zero-frequency current cross correlations. We demonstrate that this is related to two-particle orbital entanglement, detected via violation of a Bell inequality. The transport is along edge states and only adiabatic quantum point contacts and normal reservoirs are employed.  相似文献   

9.
We investigated the tunneling current peculiarities in the system of two quantum dots that are coupled by means of the external field and are weakly connected to the electrodes in the presence of Coulomb correlations. It was found that tuning of the Rabi frequency induces fast multiple tunneling current switching and leads to the negative tunneling conductivity. Special role of multielectron states was demonstrated. Moreover we revealed conditions for bistable behavior of the tunneling current in the coupled quantum dots with Coulomb correlations.  相似文献   

10.
Raman scattering on optical phonons in Si/Ge/Si structures with Ge quantum dots grown by molecular beam epitaxy at low temperatures 200–300°C has been investigated. A pseudomorphic state of an array of Ge quantum dots to a Si matrix with an ideally sharp interface has been obtained. Features associated with the inelastic relaxation of mechanical stresses have been revealed in the Raman spectrum. Two mechanisms of stress relaxation are separated. It has been shown that the spectrum of the electronic states of the array differs significantly from the set of the discrete levels of a single quantum dot, because the relaxation is inhomogeneous.  相似文献   

11.
A significant increase in the binding energy of the singlet ground state of biexciton (of spatially separated electrons and holes) in a nanosystem that consists of CdS quantum dots grown in a borosilicate glass matrix has been predicted; the effect is almost two orders of magnitude larger than the binding energy of biexciton in a sulfide cadmium single crystal.  相似文献   

12.
崔尉  王茺  崔灿  施张胜  杨宇 《物理学报》2014,63(22):227301-227301
分别采用单带重空穴近似和六带Kronig-Penney模型, 对垂直耦合锗量子点在不同耦合距离下的空穴态特性进行了计算, 并探讨了自旋-轨道的相互作用对空穴态对称性的影响. 计算结果表明: 多带耦合的框架下, 随着量子点垂直间距的增大, 空穴基态从成键态转变为反键态, 而且价带基态能级和第一激发态能级发生反交叉现象, 这与单带模型下得到的相应结果存在较大差异. 通过分析六带模型计算得到的成、反键态波函数, 轻、重空穴态和自旋-轨道分裂态对特征空穴态波函数的贡献比例随着量子点垂直间距的增大发生了转变, 并最终导致量子点空穴基态波函数由成键态转变为反键态. 关键词: 耦合量子点 空穴态 成健态-反健态 自旋-轨道  相似文献   

13.
Regularities are studied in charge transport due to the hopping conduction of holes along two-dimensional layers of Ge quantum dots in Si. It is shown that the temperature dependence of the conductivity obeys the Efros-Shklovskii law. It is found that the effective localization radius of charge carriers in quantum dots varies nonmonotonically upon filling quantum dots with holes, which is explained by the successive filling of electron shells. The preexponential factor of the hopping conductivity ceases to depend on temperature at low temperatures (T<10 K) and oscillates as the degree of filling quantum dots with holes varies, assuming values divisible by the conductance quantum e2/h. The results obtained indicate that a transition from phonon-assisted hopping conduction to phononless charge transfer occurs as the temperature decreases. The Coulomb interaction of localized charge carriers has a dominant role in these phononless processes.  相似文献   

14.
A method for calculating the spin of the ground quantum state of nonrelativistic electrons and distance between energy levels of quantum states differing in the spin magnitude from first principles is proposed. The approach developed is free from the one-electron approximation and applicable in multielectron systems with allowance for all spatial correlations. The possibilities of the method are demonstrated by the example of calculating the energy gap between spin states in model ellipsoidal quantum dots with a harmonic confining field. The results of computations by the Monte Carlo method point to high sensitivity of the energy gap to the break of spherical symmetry of the quantum dot. For three electrons, the phenomenon of inversion has been revealed for levels corresponding to high and low values of the spin. The calculations demonstrate the practical possibility to obtain spin states with arbitrarily close energies by varying the shape of the quantum dot, which is a key condition for development prospects in technologies of storage systems based on spin qubits.  相似文献   

15.
Low-temperature transport measurements have been carried out on single-wall carbon-nanotube quantum dots in a weakly coupled regime in magnetic fields. Four-electron shell filling was observed, and the magnetic field evolution of each Coulomb peak was investigated. Excitation spectroscopy measurements have revealed Zeeman splitting of single particle states for one electron in the shell, and demonstrated singlet and triplet states with direct observation of the exchange splitting at zero-magnetic field for two electrons in the shell, the simplest example of Hund's rule.  相似文献   

16.
We have calculated the exchange energy, double occupation probability of the lowest singlet state, and degree of entanglement of two holes in vertically coupled double Ge/Si quantum dots. We determined the conditions on which the exchange coupling is large enough for a fast swap operation in quantum computation and the double-occupancy probability is still low, thus maximizing the entanglement for a small computation error. We found that both the degree of entanglement and double-occupancy probability for quantum dots with different dot size collapse onto universal, size independent curves when plotted as a function of singlet-triplet splitting.  相似文献   

17.
The results of studying the energy spectrum of electrons and holes localized in second-type Ge/Si heterostructures with Ge quantum dots are presented. In such structures, holes are localized at Ge quantum dots, and electrons, in three-dimensional quantum wells, which form in Si at the Ge—Si interface because of inhomogeneous deformations that appear as a result of the difference between the Ge and Si lattice constants. It is shown that changes in the deformations in the assembly of quantum dots as a result of a variation in their spatial arrangement significantly changes the binding energy of electrons, the position of their localization at quantum dots, the binding energy and wave-function symmetry of holes at double quantum dots (artificial molecules), and the exchange interaction of electrons and holes in the exciton composition. A practically important result of the presented data is the development of approaches to increase the luminescence quantum efficiency and the absorption coefficient in assemblies of quantum dots.  相似文献   

18.
C. S. Unnikrishnan 《Pramana》2005,65(3):359-379
I discuss in detail the result that the Bell’s inequalities derived in the context of local hidden variable theories for discrete quantized observables can be satisfied only if a fundamental conservation law is violated on the average. This result shows that such theories are physically nonviable, and makes the demarcating criteria of the Bell’s inequalities redundant. I show that a unique correlation function can be derived from the validity of the conservation law alone and this coincides with the quantum mechanical correlation function. Thus, any theory with a different correlation function, like any local hidden variable theory, is incompatible with the fundamental conservation laws and space-time symmetries. The results are discussed in the context of two-particle singlet and triplet states, GHZ states, and two-particle double slit interferometry. Some observations on quantum entropy, entanglement, and nonlocality are also discussed.  相似文献   

19.
The Einstein-Podolsky-Rosen (EPR) nonlocality puzzle has been recognized as one of the most important unresolved issues in the foundational aspects of quantum mechanics. We show that the problem is more or less entirely resolved, if the quantum correlations are calculated directly from local quantities, which preserve the phase information in the quantum system. We assume strict locality for the probability amplitudes instead of local realism for the outcomes and calculate an amplitude correlation function. Then the experimentally observed correlation of outcomes is calculated from the square of the amplitude correlation function. Locality of amplitudes implies that measurement on one particle does not collapse the companion particle to a definite state. Apart from resolving the EPR puzzle, this approach shows that the physical interpretation of apparently “nonlocal” effects, such as quantum teleportation and entanglement swapping, are different from what is usually assumed. Bell-type measurements do not change distant states. Yet the correlations are correctly reproduced, when measured, if complex probability amplitudes are treated as the basic local quantities. As examples, we derive the quantum correlations of two-particle maximally entangled states and the three-particle Greenberger-Horne-Zeilinger entangled state.  相似文献   

20.
We present two methods for the creation of two-particle entangled states of excitons in a coupled quantum dot system. The system contains two identical quantum dots that are coupled by an inter-dot hopping process. The manipulation of the system is succeeded by proper application of an external laser field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号