首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Although potentially extremely important for understanding the high-pressure microscopic behaviour of materials, over the years the area of high-pressure EXAFS in particular using diamond anvil cells has proved to be technically difficult. This has significantly hampered its development. The interference of X-ray dimaction from the diamonds in the diamond anvil cell with the absorption signal has proved to be a challenging problem to tackle, restricting the use of high-pressure EXAFS to energies below about 11 key Below 11 keV however the technique is also limited due to absorption of incident X-rays by the diamonds making it virtually impossible to conduct X-ray absorption experiments below about 9keV In this paper we describe in detail the methodology for scanriirig high-pressure EXAFS in diamond anvil cells and examine the origins of the associated problems and ways of dealing with them. We also demonstrate that it is possible to extend the useful range of studied absorption edges from 7keV up to at least 30keV This brings about new opportunities for high pressure EXAFS using diamond anvil cells.  相似文献   

2.

Much work on semiconductors, soft solids and biological materials does not require the megabar capability of the diamond anvil cell; a few accurate kbar being all that may be required. Work in this range poses its own challenges, to make the experiments routine, safe and reliable, and well-calibrated. We contrast diamond anvil cells working at what for them is very low pressure, with traditional bombs working at what for them is dangerously high pressure. We describe our preferred solution, a single-diamond cell, and demonstrate its use with Raman data from ethanol under low pressure. Negative hydrostatic pressure cannot be obtained by traditional methods. However, we present data showing the Raman spectrum of ethanol apparently at the negative pressure of m 3 kbar.  相似文献   

3.
Gérard Demazeau 《高压研究》2013,33(1-6):203-212
Abstract

Pressure was developed during the 20th century. The most important illustration of the use of high pressure in Materials Science was the synthesis of diamond at the beginning of the fifties.

This contribution will describe the main scientific research axis developed these last years and based on high pressure (synthesis of new materials, stabilization of specific structures, crystal-growth, preparation of finely divided materials…).

In parallel some industrial developments will be analyzed.

In conclusion, the potential of high pressure will be sketched for the near future.  相似文献   

4.
Liling Sun  Qi Wu  Wenkui Wang 《高压研究》2013,33(3-4):159-173
Abstract

C-O-H fluids have been successfully applied as catalysts for bulk diamond formation under high pressure. New insight into C-O-H fluids extends the understanding of the origin of natural diamond, which is presently of interest in materials and geological sciences. This review presents current literature data concerning the synthesis and characterization of bulk diamond formation assisted by C-O-H fluids at high pressure and high temperature. Based on a general survey of this subject, the pressure-temperature regime for diamonds formed in these fluids was established and the mechanism of conversion from graphite to diamond is discussed. Finally, a few questions are put forward that may be useful for the continued development of this research area.  相似文献   

5.
Abstract

The process of ordering of different carbon materials in the presence of solvent metal Mn60-Ni40 under the pressure of 3.9 GPa and temperature of 1250–1370° C was studied. The rearrangment of imperfect materials structure into the graphite one occurred through an intermediate layer modification together with diamond formation, the intensity of the latter being significantly higher on carbon materials having the most imperfect structure.  相似文献   

6.
Abstract

The method of numerical modelling of the behaviour of main components (anvils and deformable gasket) in diamond anvil cells (DAC) in the process of pressure generation has been developed and realized in the form of programs packages. The optimization of the geometry and loading conditions for an anvil was conducted in line with the multilevel factor plan of major effects (MFPME). A combination of optimizing factors allowing to obtain the theoretically predicted pressure of 465 GPa has been found, the value that by 2.7 times higher than that obtained on anvils at an analogous external pressure distribution [1] and the same diamond strength.

FEM  相似文献   

7.

We synthesised a number of new silica modifications in the electrically heated diamond anvil cells at pressures over 100 GPa and temperatures over 1200 K. The structure of these polymorphs is based on hexagonal close packing of oxygen atoms with different degree of ordering of silicon atoms in octahedral and tetrahedral sites.  相似文献   

8.
ABSTRACT

Nano-polycrystalline diamonds (NPDs) have become fundamental tools for cutting-edge X-ray absorption spectroscopy (XAS) studies at high P/T conditions that opened up new research directions by overcoming previous limitations. Indeed, NPDs yield a continuous and weak X-ray background signal which enables the collection of high-quality XAS data of materials compressed in diamond anvil cells. This is a critical advantage over the classically used single-crystal diamonds that generate strong parasitic signals (glitches) which render the analysis of XAS data in many cases impossible. In this contribution we give an overview of the impact and the scientific opportunities that NPDs opened up for extreme condition XAS spectroscopy at the European Synchrotron Radiation Facility and discuss future needs.  相似文献   

9.
M. Togaya 《高压研究》2013,33(1-6):342-344
Abstract

The melting behaviors of graphite and diamond were investigated at pressures up to 25 GPa using flash-heating method. By rapid heating, the metastable graphite was melted in the diamond stable P-T field, competing with its conversion to diamond in the rate of reaction. For the diamond the pressure dependence of inserted energy required to reach the molten state suggested that the melting temperature of diamond increases with pressure.  相似文献   

10.
Abstract

We present a new technique for structure characterization under high pressure conditions. The use of an undulator beam of the third-generation ESRF source of synchrotron radiation has enabled the first single crystal EXAFS experiments at high pressure using a diamond anvil cell as pressure generator. Taking advantage of the linear polarization of X-rays the technique becomes an orientation-selective probe of the local structure of materials. We describe the principle of the technique and some applications.  相似文献   

11.
12.
Abstract

Studies of matter under very high pressure at synchrotron radiation sources are mostly done using pressure cells with single-crystal diamond anvils. In some cases the available volume (≤ 10?3mm3)in such cells causes problems especially at high temperature and for crystal synthesis. To ensure sufficient homogeneity of pressure and temperature, the use of cells with large sample volumes (≥ 1 mm3) is necessary.

Existing devices for such measurements are compared with a novel setup which consists of a toroidal anvil arrangement and a lightweight (50 kg) press with 250 tonnes (2.5 MN) capacity. Preliminary tests of this instrument with synchrotron radiation are reported.

Presented at the IUCr Workshop on ‘Synchrotron Radiation Instrumentation for HighPressure Crystallography’. Daresbury Laboratory 20-21 July 1991  相似文献   

13.
Abstract

A new neutron spectrometer for investigations of elastic and inelastic neutron scattering on polycrystal microsamples under high pressure in diamond and sapphire anvils cells is described. The spectrometer is operating at the IBR-2 pulsed reactor at JINR. The time-of-flight method and ring-shaped multicounter detector are used to register the scattered neutrons. Parameters and methodical peculiarities of the device and the examples of experimental studies are given.  相似文献   

14.
Abstract

Constructions of a cryogenic diamond anvil system with mechanical clamping press and helium pressure medium for microscopic optical studies are described. Low temperature nonmagnetic cells ø40 and ø20 mm have been developed. GaP samples doped with S, Te and isoelectronic impurities N, NN have been investigated up to 20 GPa at 1.5-300K.  相似文献   

15.
ABSTRACT

The use of nanopolycrystalline diamond has allowed a systematic study on deformation of polycrystalline diamond composites (PCDCs). Bulk PCDCs samples containing either Co or SiC as a binding agent were deformed under high pressure and temperature to strains up to 18% at strain rates ~10?5?s?1. All samples exhibit strong work hardening. The strength of PCDCs depends on the amount and type of binding agents and is consistently weaker than that of diamond single crystals. The weakening may be due to the binder materials, which play an important role in affecting grain boundary structures. In SiC-based PCDC, significant grain fragmentation occurs. Nearly all grain boundaries are wetted by SiC after large deformation, resulting in lower strength. In Co-based PCDC, the microstructure is dominated by dislocations, deformation twins, and separated grain boundaries. The density of deformation twins increases significantly with strain, with the twin domain width reaching as low as 10–20?nm at 14% strain.  相似文献   

16.
Abstract

The influence of P, T-parmeters and duration of heat when synthesizing diamond in high pressure apparatus both of recessed anvil-type and cylindrical type (belt-type) on properties of diamond powders was studied. The dependence of pressure in reaction cells on temperature of force elements of apparatus in initial state and on efficiency of high pressure production in a reaction cell before heating was shown.  相似文献   

17.
ABSTRACT

Current anvil designs and problems associated with various efforts to generate static high pressures beyond the limit of conventional diamond anvil cells (DACs) (~400?GPa) are reviewed. Pressures of up to 1?TPa have been reported by one research group using the double-stage DAC (ds-DAC) technique, but no other research group has successfully reproduced this high pressure result. Some research groups have used toroidal anvils, achieving pressures of >400?GPa. We have conducted numerous ds-DAC experiments and investigated the problems associated with such experiments. They include problems associated with various pressure scales in the multi-megabar region, difficulties in obtaining reliable X-ray diffraction patterns from micron-sized samples, and physical property measurements of tiny materials that may be harder than diamond. Each of these problems is discussed, following the summary of various experiments.  相似文献   

18.
ABSTRACT

A simple modified Bridgman design for large volume pressure anvils usable in the Paris-Edinburgh (PE) press has been demonstrated at Oak Ridge National Laboratory Spallation Neutron Source. The design shows advantages over the toroidal anvils typically used in the PE press, mainly rapid compression/decompression rates, complete absence of blow-outs upon drastic phase transitions, simplified cooling, high reliability, and relative low loads (~40 tons) corresponding to relatively high pressures (~20?GPa). It also shows advantages over existing large-volume diamond cells as sample volumes of ~2–3?mm3 can be easily and rapidly synthesized. The anvils thus allow sample sizes sufficient for in situ neutron diffraction as well as rapid synthesis of adequate amounts of new materials for ex situ analysis via total neutron scattering and neutron spectroscopy.  相似文献   

19.
V. Z. Turkevich 《高压研究》2013,33(3-4):525-529

For reasons of phase equilibria, the lowest temperatures T min , above which at high pressures the diamond crystallization from melt solutions is allowable in terms of thermodynamics, have been found for a number of metal-carbon systems. In the Ta-C and Nb-C systems, the diamond synthesis is possible at temperatures below T min , while to synthesize diamond in the Mg-Zn-C system, the temperatures much higher than T min , are required because of the necessity to overcome the kinetic difficulties.  相似文献   

20.
Abstract

In the present paper, diamond films have been synthesized on tungsten carbide, sintered diamond and high pressure diamond by hot filament chemical vapour deposition method from the mixture gas of methane and hydrogen, and growth features of diamond were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号