首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract

In an effort to synthesize B-Sb, Ge-Sb and Xe-Pd compounds under high pressure, the respective system was laser-heated in a diamond anvil cell at temperatures above 2500 K and up to a maximum pressure of 51 GPa. The product was characterized by X-ray diffraction using rotating anode and synchrotron radiation X-ray sources. No reaction was observed in any of these systems up to pressures of 32, 20 and 51 GPa, respectively. In the case of Ge-Sb, new peaks were observed in the pressurequenched samples, but they were identified with the known metastable phases of Ge. In this regard our results are contrary to the earlier work on Ge-Sb.  相似文献   

2.

We synthesised a number of new silica modifications in the electrically heated diamond anvil cells at pressures over 100 GPa and temperatures over 1200 K. The structure of these polymorphs is based on hexagonal close packing of oxygen atoms with different degree of ordering of silicon atoms in octahedral and tetrahedral sites.  相似文献   

3.
Abstract

We review the chemical and mechanical behaviour of diamond and other materials of use in diamond anvil cells intended to operate at high temperature. Operation at up to 600?C presents no special problems, whereas high-pressure studies at higher temperatures require cells constructed from unusual materials and controlled-atmosphere operation. Methods of P and T determination are also discussed.

Presented at the IUCr Workshop on ‘Synchrotron Radiation Instrumentation for HighPressure Crystallography’. Daresbury Laboratory 20-21 July 1991  相似文献   

4.
Liling Sun  Qi Wu  Wenkui Wang 《高压研究》2013,33(3-4):159-173
Abstract

C-O-H fluids have been successfully applied as catalysts for bulk diamond formation under high pressure. New insight into C-O-H fluids extends the understanding of the origin of natural diamond, which is presently of interest in materials and geological sciences. This review presents current literature data concerning the synthesis and characterization of bulk diamond formation assisted by C-O-H fluids at high pressure and high temperature. Based on a general survey of this subject, the pressure-temperature regime for diamonds formed in these fluids was established and the mechanism of conversion from graphite to diamond is discussed. Finally, a few questions are put forward that may be useful for the continued development of this research area.  相似文献   

5.

Using the new technique of nuclear forward scattering (NFS) of synchrotron radiation, we studied the magnetic hyperfine fields B hf and ordering temperatures T M of the Laves phases LuFe 2 (cubic C15) and ScFe 2 (hexagonal C14) at pressures up to 90 GPa and temperatures up to 700 K. For LuFe 2 we find for T M first an increase from 562 K at 0 GPa to 603 K at 10 GPa and then a decrease to 295 K around 75 GPa. The hyperfine fields B hf show at 295 K a continuous decrease with pressure, indicating a reduction of the Fe band moment. A similar behaviour of both T M and B hf was observed in ScFe 2.  相似文献   

6.
Abstract

Raman spectra of PbMoO4 have been measured up to 31 GPa in a diamond anvil cell (DAC). Two new phases were found at 10 and 16 GPa pressures at room temperature.  相似文献   

7.
Abstract

In order to serve as substitute for the pressure ruby scale at high temperature, the breathing mode of bemsens (990 cm?1) and the first order Raman mode of diamond (1333 cm?1) have been studied as a function of pressure and temperature in the range of 0–15 GPa and 25–400°C. The diamond and bensene Raman frequency shifts are shoft to be of valuable use as a pressure scale at high temperature. A further advantage of bensene is to remain a suitable pressure transmitting medium up to 350°C and 15 GP.  相似文献   

8.
Abstract

A diamond layer was formed on a carbide substrate in an irregular temperature field at high pressures (HP). A gradient scheme of HP cell set-up has been developed, which provides for a simultaneous impregnation of opposite planes of a diamond layer by components that differ in melting temperature. The cell temperature field has been calculated and physico-mechanical properties of the obtained composite material have been studied.  相似文献   

9.
Abstract

Optical measurements in the diamond anvil cell (DAC) as well as thermodynamics, show cubic GaAs I to be unstable at 300 K, at 13 GPa. The thermodynamic phase line from GaAs I to the high pressure (H.P.) form(s) is at 11 ± 2 GPa. Large hyteresis makes the actual I→II transition observable only at 17.5 ± 1 GPa.  相似文献   

10.
It is shown that an approximately 150 nm thick ion-implanted buried layer in diamond and excited by a pulsed laser at wavelength λ=337 nm is a source of nonequilibrium acoustic phonons propagating ballistically through the diamond sample at temperatures ∼2 K. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 4, 270–272 (25 August 1996)  相似文献   

11.
On the basis of the high-pressure diamond anvil cell experiments on Os metal, Cynn et al. [Phys. Rev. Lett. 88, 135701-1 (2002)] have reported that this metal has lower compressibility than diamond. In the present work we have reanalysed the experimental data of Cynn et al. We find that the bulk moduli of Os and diamond are close to each other, implying that Os metal is as incompressible as diamond, but not more so. Our first principles total energy calculations using the full potential linearised augmented plane wave method on Os and diamond also suggest the same results.  相似文献   

12.
We describe some important improvements allowed by the development of new cell assemblies coupled to opposed conical sintered diamond anvils in the Paris–Edinburgh press. We provide X-ray absorption and diffraction experiments carried out at pressures up to 16.5 GPa. The maximum temperature reached was 1800 K for P<10 GPa and 1300 K for higher pressures. The sintered diamond anvils are X-ray transparent and give access to a much larger X-ray window than the tungsten carbide anvils, even at the highest pressure. Therefore, X-ray measurements are performed using in situ cross-calibration simultaneously. We also describe a new heating setup used to reach high temperatures, despite the low conductivity of the sintered diamond core by deviating the electrical current using copper strips. These improvements are illustrated by recent data collected using angle dispersive in situ X-ray diffraction on liquid Fe-18%wt S and using EXAFS at the barium K-edge on Ba8Si46 silicon clathrates and at the iodine K-edge on iodine-intercalated nanotubes.  相似文献   

13.

Much work on semiconductors, soft solids and biological materials does not require the megabar capability of the diamond anvil cell; a few accurate kbar being all that may be required. Work in this range poses its own challenges, to make the experiments routine, safe and reliable, and well-calibrated. We contrast diamond anvil cells working at what for them is very low pressure, with traditional bombs working at what for them is dangerously high pressure. We describe our preferred solution, a single-diamond cell, and demonstrate its use with Raman data from ethanol under low pressure. Negative hydrostatic pressure cannot be obtained by traditional methods. However, we present data showing the Raman spectrum of ethanol apparently at the negative pressure of m 3 kbar.  相似文献   

14.
ABSTRACT

A new opposed type double-stage large volume cell has been developed to compress large volume samples to more than 100?GPa (Mbar) pressure. A pair of second-stage diamond anvils is introduced into the first-stage Paris–Edinburgh press. The double-stage large volume cell allows the generation of ultrahigh pressures using a large culet diameter of the second-stage diamond anvils (diameters of 0.5–1.2?mm). Pressure generation up to 131?GPa has been achieved by using the culet diameter of 0.5?mm. Sample volume of the double-stage large volume cell can be more than ~100 times larger than that of conventional Mbar experiment using a diamond anvil cell. The double-stage large volume cell has a large opening in the horizontal plane for X-ray measurements, which is particularly suited for the multi-angle energy dispersive X-ray diffraction measurement, thus opening a new way of in situ structural determinations of amorphous materials at Mbar pressures.  相似文献   

15.
Abstract

Laboratory measurements of the electrical conductivity of brine saturated acidic and metabasic rocks were done at confining pressures up to 0.2 GPa, high pore pressures and temperatures of 900°C. Acidic rocks showed conductivities insufficient to explain the lower crustal high conductivity layer. Basic rocks, however, showed conductivities consistent with the high conductivity layer at those temperatures that the layer is thought to possess.  相似文献   

16.
Abstract

The objectives of this work are two fold: (1) to study the effect of using oxygen-acetylene flame grown synthetic diamond as seed crystals for the high pressure-high temperature conversion of graphite into diamond and (2) to demonstrate the ability to produce small crystallites of diamond by a simple, electron beam evaporation technique. In each case, the production of diamond from graphite was confirmed.  相似文献   

17.
The results of an investigation of the transformation of C60 fullerite to diamond under pressure through intermediate three-dimensionally polymerized and amorphous phases are reported. It is found that treatment of fullerite C60 at pressures 12–14 GPa and temperatures ∼1400°C produces a nanocrystalline graphite-diamond composite with a concentration of the diamond component exceeding 50%. At lower temperatures (700–1200°C) nanocomposites consisting of diamondlike (sp 3) and graphitic (sp 2) amorphous phases are formed. The nanocomposites obtained have extremely high mechanical characteristics: hardness comparable to that of best diamond single crystals and fracture resistance two times greater than that of diamond. Mechanisms leading to the transformation of C60 fullerite into diamond-based nanocomposites and the reasons for the high mechanical characteristics of these nanocomposites are discussed. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 11, 822–827 (10 June 1999)  相似文献   

18.
Abstract

The behaviour of bromobenzene (BBe) compressed in a diamond anvill cell up to 30 GPa was studied by XANES and Raman spectroscopy. The liquid-solid transition and a solid-solid transition were observed at 0.9 GPa and 9 GPa respectively. Above 24 GPa, an irreversible transformation occurs to a solid orange-yellow compound which can be recovered at zero pressure. The polymerization mechanism, in connection with the occurence of Br-bonded Sp2 and Sp3 carbons in the solid compound, is discussed.  相似文献   

19.
Abstract

Well—resolved Raman spectra of crystalline sulfur have been recorded in a diamond anvil cell (DAC) in the pressure range from atmospheric pressure to 50 GPa at room temperature, using an 0.6 m triple spectrograph and a CCD multichannel detector. The spectra indicate two phase transitions in the pressure region between 10 and 15 GPa.  相似文献   

20.
Abstract

The miniature cryogenic diamond anvil described previously [D.J. Dunstan and W. Scherrer, Rev. Sci. Instrum. 59, 627 (1988)] has been modified to facilitate its use, and has been taken to 26GPa. The modifications are described here, together with some details of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号