首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Judging from the strong attendance and enthusiastic comments from participants, the three-day, third annual school on synchrotron techniques in environmental and materials sciences held at SSRL May 20–22, 2008, was a success. More than 50 students, post-docs, and career scientists from US national laboratories and academic institutions participated in the school. International participants came from Mexico, Canada, and Jordan. Diverse and crosscutting disciplinary backgrounds were represented, from environmental remediation science and geochemistry, to heterogeneous catalysis and bioinorganic chemistry, to materials sciences and applied physics. Overall, participants commented on the effectiveness and helpfulness of the school and requested that future schools be expanded.  相似文献   

2.
The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11-25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the United States and provided them with a broad introduction to the properties and techniques available at the major large-scale neutron and synchrotron X-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, the students received lectures by more than 30 researchers from academia, industry, and national laboratories and participated in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources.  相似文献   

3.
The use of synchrotron radiation techniques to study cultural heritage and archaeological materials has undergone a steep increase over the past 10–15 years. The range of materials studied is very broad and encompasses painting materials, stone, glass, ceramics, metals, cellulosic and wooden materials, and a cluster of organic-based materials, in phase with the diversity observed at archaeological sites, museums, historical buildings, etc. Main areas of investigation are: (1) the study of the alteration and corrosion processes, for which the unique non-destructive speciation capabilities of X-ray absorption have proved very beneficial, (2) the understanding of the technologies and identification of the raw materials used to produce archaeological artefacts and art objects and, to a lesser extent, (3) the investigation of current or novel stabilisation, conservation and restoration practices. In terms of the synchrotron methods used, the main focus so far has been on X-ray techniques, primarily X-ray fluorescence, absorption and diffraction, and Fourier-transform infrared spectroscopy. We review here the use of these techniques from recent works published in the field demonstrating the breadth of applications and future potential offered by third generation synchrotron techniques. New developments in imaging and advanced spectroscopy, included in the UV/visible and IR ranges, could even broaden the variety of materials studied, in particular by fostering more studies on organic and complex organic–inorganic mixtures, while new support activities at synchrotron facilities might facilitate transfer of knowledge between synchrotron specialists and users from archaeology and cultural heritage sciences.  相似文献   

4.
More than 250 scientists from 22 countries gathered in Chicago, Illinois, from July 30 to August 2, 2006, to participate in the Fifth International Conference on Synchrotron Radiation in Materials Science (SRMS-5). The SRMS conference is held every two years, bringing together leading-edge researchers in the materials sciences making use of synchrotron radiation. The conference, which was organized and hosted this year by Argonne National Laboratory and the Advanced Photon Source, provided an overview of the latest research developments in a broad range of areas, such as polymers and biomaterials, magnetic and superconducting materials, glasses and ceramics, engineering materials, materials under extreme conditions, complex oxides, innovative instrumentation, membranes, and thin films. The aim of SRMS-5 was to highlight recent breakthroughs in materials science using synchrotron radiation and to open doors to future innovation and discovery.  相似文献   

5.
同步辐射讲座第四讲同步辐射光50年   总被引:1,自引:0,他引:1  
麦振洪 《物理》2002,31(10):670-675
自1946年Blewett首次观察到同步辐射光至今已经55年,文章回顾了同步辐射光源的发展历史,着重介绍了同步辐射光源的性质,并简要介绍了同步辐射在生命科学、材料科学、原子分子科学、地球科学和环境科学以及工业等领域中的应用。  相似文献   

6.
Modern synchrotron-based X-ray scattering (SR-XRS) techniques offer the ability to probe nano- and atomic-scale structures, interfaces, and order/disorder relationships that govern the properties of advanced technological and environmental materials. Important materials studied at the Stanford Synchrotron Radiation Laboratory (SSRL) include thin films and interfaces, nanoparticles, amorphous materials, solutions, polymers, and bacteriogenic minerals. Good planning and a working knowledge of beam lines and techniques are required to successfully conduct SR-XRS measurements. This second annual School at SSRL on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences, held at the Stanford Linear Accelerator Center (SLAC) on May 15–17, 2007, provided a practical users' guide to planning and conducting scattering measurements at SSRL beam lines, with an emphasis on information that cannot be found in textbooks. More than 45 researchers, mostly graduate students and postdocs, participated in this crosscutting workshop. Attendees represented a variety of fields including material sciences, applied physics, environmental sciences, and chemistry.  相似文献   

7.
Synchrotron-based X-ray scattering (SR-XRS) techniques offer the ability to probe nano- and atomic-scale structure that dictates the properties of advanced technological and environmental materials. Important materials studied at the Stanford Synchrotron Radiation Lightsource (SSRL) include organic and inorganic thin films and interfaces, nanoparticles, monolayers, complex oxides, solutions, polymers, minerals, and poorly crystalline materials. Good planning and a working knowledge of beam lines and techniques are required to successfully conduct SR-XRS measurements. This fifth annual School at SSRL on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences, held at the SLAC National Accelerator Laboratory on June 1–3, 2010, provided a practical users' guide to planning and conducting scattering measurements at SSRL beam lines, with an emphasis on information that cannot be found in textbooks. More than 45 researchers, mostly graduate students and postdoctoral associates, participated in this workshop. Attendees represented a variety of fields including material sciences, chemical engineering, applied physics, environmental and earth sciences, and chemistry.  相似文献   

8.
Synchrotron-based X-ray scattering (SR-XRS) techniques offer the ability to probe nano- and atomic-scale structures that dictate the properties of advanced technological and environmental materials. Important materials studied at the Stanford Synchrotron Radiation Lightsource (SSRL) include organic and inorganic thin films and interfaces, nanoparticles, complex oxides, solutions, polymers, minerals, and poorly crystalline materials. Good planning and a good working knowledge of beamlines and techniques are required to successfully conduct SR-XRS measurements. This sixth annual School at SSRL on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences was held at the SLAC National Accelerator Laboratory on May 29-31, 2012, and provided a practical users' guide to planning and conducting scattering measurements at SSRL beam lines. There was an emphasis on information that cannot be found in textbooks. More than 50 researchers, mostly graduate students and postdoctoral associates, participated in this workshop. Attendees represented a variety of fields including material sciences, chemical engineering, applied physics, chemistry and earth sciences.  相似文献   

9.
The Fourth International Workshop on Imaging Techniques in Synchrotron Radiation was held September 24–27, 2011, in the famous wine-growing town of Bordeaux, France. Previous meetings were held in China: Hefei (2008), Sanya (2009), and Suzhou (2010). Delegates were primarily from Europe, Asia, and the U.S., with 55 participants representing 15 countries and 15 synchrotron facilities. The workshop was organized by Cyril Petibois (Univ. Bordeaux, France), Augusto Marcelli (INFN-LNF, Italy), and Ziyu Wu (NSRL and BSRF, P.R. China). The program was based on a combination of oral sessions and thematic roundtables for discussion. Topics covered applications of various imaging techniques including image processing, imaging in environmental and materials sciences, phase contrast imaging, nanoscopy, vibrational spectroscopy and molecular imaging, imaging in biosciences, and imaging detectors.  相似文献   

10.
Infrared (IR) spectroscopy has evolved into a powerful analytical technique to probe molecular and lattice vibrations, low-energy electronic excitations and correlations, and related collective surface plasmon, phonon, or other polaritonic resonances. In combination with scanning probe microscopy, near-field infrared nano-spectroscopy and -imaging techniques have recently emerged as a frontier in imaging science, enabling the study of complex heterogeneous materials with simultaneous nanoscale spatial resolution and chemical and quantum state spectroscopic specificity. Here, we describe synchrotron infrared nano-spectroscopy (SINS), which takes advantage of the low-noise, broadband, high spectral irradiance, and coherence of synchrotron infrared radiation for near-field infrared measurements across the mid- to far-infrared with nanometer spatial resolution. This powerful combination provides a qualitatively new form of broadband spatio-spectral analysis of nanoscale, mesoscale, and surface phenomena that were previously difficult to study with IR techniques, or even any form of micro-spectroscopy in general. We review the development of SINS, describe its technical implementations, and highlight selected examples representative of the rapidly growing range of applications in physics, chemistry, biology, materials science, geology, and atmospheric and space sciences.  相似文献   

11.
The use of synchrotron radiation in fundamental and applied materials research is expanding in Europe. Traditionally, synchrotron radiation was used to study the final properties of metal alloys. More recently, due to improvements of the sources, detectors, and experimental techniques themselves, materials processing can be studied in situ on an industrial scale. Various techniques, such as imaging, tomography, and diffraction, are used to study material processing, solidification, thermo-mechanical treatment, shaping, and mechanical behavior under various conditions such as stress and temperature. The use of these techniques in real time during the processing is essential to understand, and furthermore to optimize, the process yielding desired materials properties.  相似文献   

12.
Synchrotron photon-based methods are increasingly being used for the physico-chemical study of ancient and historical materials (archaeology, palaeontology, conservation sciences, palaeo-environments). In particular, parameters such as the high photon flux, the small source size and the low divergence attained at the synchrotron make it a very efficient source for a range of advanced spectroscopy and imaging techniques, adapted to the heterogeneity and great complexity of the materials under study. The continuous tunability of the source — its very extended energy distribution over wide energy domains (meV to keV) with a high intensity — is an essential parameter for techniques based on a very fine tuning of the probing energy to reach high chemical sensitivity such as XANES, EXAFS, STXM, UV/VIS spectrometry, etc. The small source size attained (a few micrometres) at least in the vertical plane leads to spatial coherence of the photon beams, giving rise in turn to a series of imaging methods already crucial to the field. This review of the existing literature shows that microfocused hard X-ray spectroscopy (absorption, fluorescence, diffraction), full-field X-ray tomography and infrared spectroscopy are the leading synchrotron techniques in the field, and presents illustrative examples of the study of ancient and historical materials for the various methods. Fast developing analytical modalities in scanning spectroscopy (STXM, macro-XRF scanning) and novel analytical strategies regarding optics, detectors and other instrumental developments are expected to provide major contributions in the years to come. Other energy domains are increasingly being used or considered such as far-infrared and ultraviolet/visible for spectroscopy and imaging. We discuss the main instrumental developments and perspectives, and their impact for the science being made on ancient materials using synchrotron techniques.  相似文献   

13.

The 18th Annual Meeting and General Assembly of the Japanese Society for Synchrotron Radiation Research (JSSRR) and the joint symposium of synchrotron radiation facility user's society groups were held at Sun-Messe Tosu Conference Hall in Tosu City, Japan, from January 7 to 9, 2005. The meeting was attended by 607 people and included 6 symposiums, 96 oral presentations, and 356 poster presentations covering all aspects of synchrotron radiation research and technology. The meeting also included 49 industrial exhibitions.

The six symposiums were on “Recent progress on soft X-ray optical elements,” “Now and the future on SR-XRF analysis for biological and environmental sciences,” “Recent development of THz Coherent Synchrotron Radiation,” “Super high-resolution protein structure analysis,” “Frontlines of Bio-Nano-microspectroscopy by UV-SX high brilliance SR,” and “The role of synchrotron radiation in the future of science: groundbreaking SR utilization for research on excited states”.  相似文献   

14.
Over recent synchrotron experiments and publications we have devel- oped methods for measuring the absorption coefficient in the XAFS (X-ray Absorption Fine Structure) region and far from an edge in neutral atoms, simple compounds and organometallics which can reach accuracies of below 0.02%. This is 50–500 times more accurate than earlier methods, and 50–250 times more accurate than claimed uncertainties in theoretical computations for these systems. The data and methodology is useful for a wide range of applications, including dominant synchrotron and laboratory techniques relating to fine structure, near-edge analysis and standard crystallography. The experiments are sensitive to many theoretical and computational issues, including correlation and convergence of individual electronic and atomic orbitals and wavefunctions.  相似文献   

15.
The information that can be retrieved from the study of ancient materials and studies on their conservation rely strongly on the development and application of new techniques of physical analysis. This is particularly important at a time when global changes affecting our environment and way of life impose new stresses putting heritage preservation at risk. For this purpose, synchrotron techniques are particularly suited to the non- (or micro-) destructive characterisation of such heterogeneous materials, and a steep increase in the number of publications has been noticed recently from cultural heritage works using synchrotron radiation. In 2004, an interface dedicated to archaeology and cultural heritage was launched at the SOLEIL synchrotron to allow researchers from the international scientific community to be granted specific expertise. This interface aims at easing the access of researchers to the synchrotron, facilitating contacts, providing technical support and informing the community. The very first applications of SOLEIL beamlines in the heritage field are illustrated through works recently carried out at the first beamline of SOLEIL, LUCIA, currently located at the Swiss Light Source (SLS). The setup of the beamline is succinctly described. PACS 07.85.Qe; 87.59.-e  相似文献   

16.
The ESRF—the European Synchrotron Radiation Facility—is an international user facility in Grenoble, France, and a leader in the generation of the most intense high-energy (6 GeV) X-rays in the world. It was the very first “third-generation” synchrotron to be built and its extremely brilliant light provides opportunities for scientists all over the world in the exploration of materials and living matter, ranging from the chemistry and physics of materials to archeology and cultural heritage, together with structural biology and medical applications, the sciences of the environment, and the sciences of information and nanotechnologies.  相似文献   

17.
Scanning X‐ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi‐keV range. In this paper the development of a segmented charge‐integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third‐generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements.  相似文献   

18.
19.
IPANEMA, a research platform devoted to ancient and historical materials (archaeology, cultural heritage, palaeontology and past environments), is currently being set up at the synchrotron facility SOLEIL (Saint‐Aubin, France; SOLEIL opened to users in January 2008). The new platform is open to French, European and international users. The activities of the platform are centred on two main fields: increased support to synchrotron projects on ancient materials and methodological research. The IPANEMA team currently occupies temporary premises at SOLEIL, but the platform comprises construction of a new building that will comply with conservation and environmental standards and of a hard X‐ray imaging beamline today in its conceptual design phase, named PUMA. Since 2008, the team has supported synchrotron works at SOLEIL and at European synchrotron facilities on a range of topics including pigment degradation in paintings, composition of musical instrument varnishes, and provenancing of medieval archaeological ferrous artefacts. Once the platform is fully operational, user support will primarily take place within medium‐term research projects for `hosted' scientists, PhDs and post‐docs. IPANEMA methodological research is focused on advanced two‐dimensional/three‐dimensional imaging and spectroscopy and statistical image analysis, both optimized for ancient materials.  相似文献   

20.
《Comptes Rendus Physique》2009,10(7):590-600
Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is one of the emerging techniques increasingly employed for Cultural Heritage analytical science. Such a technique combines the assets of FTIR spectroscopy (namely, the identification of molecular groups in various environments: organic/inorganic, crystallized/amorphous, solid/liquid/gas), with the extra potential of chemical imaging (localization of components + easier data treatment thanks to geographical correlations) and the properties of the synchrotron source (namely, high brightness, offering high data quality even with reduced dwell time and reduced spot size).This technique can be applied to nearly all kind of materials found in museum objects, going from hard materials, like metals, to soft materials, like paper, and passing through hybrid materials such as paintings and bones. The purpose is usually the identification of complex compositions in tiny, heterogeneous samples.Recent applications are reviewed in this article, together with the fundamental aspects of the infrared synchrotron source which are leading to such improvements in analytical capabilities. A recent example from the ancient Buddhist paintings from Bamiyan is detailed. Emphasis is made on the true potential offered at such large scale facilities in combining SR-FTIR microscopy with other synchrotron-based micro-imaging techniques. To cite this article: M. Cotte et al., C. R. Physique 10 (2009).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号