首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
范靖  包括  段德芳  汪连城  刘冰冰  崔田 《中国物理 B》2012,21(8):86104-086104
The previously proposed theoretical and experimental structures,bond characterization,and compressibility of Mg(BH 4) 2 in a pressure range from 0 to 10 GPa are studied by ab initio density-functional calculations.It is found that the ambient pressure phases of meta-stable I4 1 /amd and unstable P-3m1 proposed recently are extra stable and cannot decompose under high pressure.Enthalpy calculation indicates that the ground state of F 222 structure proposed by Zhou et al.[2009 Phys.Rev.B 79 212102] will transfer to I4 1 /amd at 0.7 GPa,and then to a P-3m1 structure at 6.3 GPa.The experimental P 6 1 22 structure(α-phase) transfers to I4 1 /amd at 1.2 GPa.Furthermore,both I4 1 /amd and P-3m1 can exist as high volumetric hydrogen density phases at low pressure.Their theoretical volumetric hydrogen densities reach 146.351 g H 2 /L and 134.028 g H 2 /L at ambient pressure,respectively.The calculated phonon dispersion curve shows that the I4 1 /amd phase is dynamically stable in a pressure range from 0 to 4 GPa and the P-3m1 phase is stable at pressures higher than 1 GPa.So the I4 1 /amd phase may be synthesized under high pressure and retained to ambient pressure.Energy band structures show that they are both always ionic crystalline and insulating with a band-gap of about 5 eV in this pressure range.In addition,they each have an anisotropic compressibility.The c axis of these structures is easy to compress.Especially,the c axis and volume of P-3m1 phase are extraordinarily compressible,showing that compression along the c axis can increase the volumetric hydrogen content for both I4 1 /amd and P-3m1 structures.  相似文献   

2.
Abstract

The crystal structure of the TiH0·74 alloy was studied by the energy dispersive X-ray diffraction technique in the pressure range to 30·5 GPa at temperatures to 630 K. A phase transformation to the (η + ω) two-phase state was found to occur above 7 GPa at room temperature, then (η+ω)-TiH0·74 remained stable up to P=30·5 GPa. Another phase transformation resulting in a single-phase state, ζ-TiH0·74, was found to occur upon heating (η+ω)-TiH0·74 above T ? 560 K. Both high-pressure phases, η and ζ, were indexed on the basis of the tetragonal sublattices of the Ti atoms with nearly the same specific volumes. It is assumed from the relation of the specific volumes that the hydrogen atoms occupy the tetrahedral interstices in the ζ-phase and the octahedral interstices in the η-phase.  相似文献   

3.
Abstract

The pressure dependence of the crystal structure of a powder sample of Y2Fe15·3Si1·7 was studied in the pressure range from 0 to 2 GPa, using the D-2 diffractometer with hydrostatic liquid pressure cell at the IVV-2M reactor (Ekaterinburg) and DN-12 time-of-flight diffractometer with a sapphire anvil cell at the IBR-2 pulsed reactor (Dubna). Also the pressure dependence of the Curie temperature Tc (P) of the alloy was studied. The correlation between the decreases of both Tc and Fe-Fe interatomic distances in “dumbbell” site 4f under pressure was obtained.  相似文献   

4.
Abstract

Phase transitions of orthorhombic sulfur were investigated above 10 GPa by Raman spectroscopy using red light excitation. Transitions into several phases that have been reported in previous studies using green light excitation, are confirmed. The phase behaviour is observed to depend strongly on the preparation method. In the presence of a pressure transmitting medium (methanol/ethanol, 4:1), a sequence of phases α-S8 → [intermediate phase (“ip”) + S6] → [S6 + high pressure-low temperature phase (“hplt”)] is described and characterized. Without the use of a pressure transmitting medium, the phase sequence α-S8 → [“ip” + “hplt”] + “hplt” is observed. In addition, contributions of amorphous sulfur are detected around 10 GPa, i.e. at pressures below the transformation of α-S8 into the above-mentioned phases. Characteristic Raman spectra of the different phases are extracted and documented over a wide pressure range.  相似文献   

5.
S. Ves  W. Hönle  K. Syassen 《高压研究》2013,33(1-6):36-40
Abstract

We have investigated the effect of pressure on the Raman spectra of the ternary chalcogenides CulnSe2 (chalcopyrite structure) and LiInSe2 (β-NaFeO2 structure) for pressures extending well above their first pressure-induced phase transitions. Sign and magnitude of Griineisen parameters are discussed by comparing to related tetrahedrally coordinated chalcogenides. Discontinuous changes of the Raman frequencies indicate pressure-induced phase transitions at 8.0±0.3 and 4.2±0.2 GPa in CuInSe2 and in LiInSe2, respectively. The Raman spectra of the low-pressure phases are not recovered after pressure release but a highly disordered structure is induced. In the case of LiInSe2, the effect of laser heating on the Raman spectra of the high-pressure phase is investigated and discussed in light of recent high-pressure x-ray investigations.  相似文献   

6.
7.

We have investigated the pressure effects on the structural properties of C 6 O 2 I 4 up to 39 GPa by powder x-ray diffraction measurements, which were compared with those of C 6 I 6 . The diffraction patterns of C 6 O 2 I 4 indicated a phase transition starting at 26.8 GPa. The mixed state of the low- and high-pressure phases continued up to 39 GPa well above an insulator-to-metal transition pressure of 33 GPa. The C 6 O 2 I 4 molecule remains planar structure in the low-pressure phase below 26.8 GPa in contrast to the non-planar molecular structure of C 6 I 6 at ambient and high pressures.  相似文献   

8.
The 2H polytype of a SnS2 layered crystal has been studied using Raman spectroscopy at pressures of up to 5 GPa in a diamond anvil cell. The Raman frequency of the intralayer mode increases linearly with increasing pressure at baric coefficients of 5.2 cm−1/GPa for P<3 GPa and 3.4 cm−1/GPa for P>3 GPa. This change in the baric coefficient for Raman scattering and the available data on X-ray measurements of the compressibility of 2H-SnS2up to 10 GPa suggest that the crystal structure undergoes a transformation at about 3 GPa.  相似文献   

9.
Abstract

Thorium and plutonium dioxides were studied under pressure by the energy dispersive X-ray diffraction method. A double conical slit assembly was used to collect simultaneously the diffracted radiation at five and seven degrees.

ThO2 undergoes a phase transformation at 40 GPa. The high-pressure phase remains stable up to 55 GPa, the highest pressure reached in the experiment. For PuO2, a structural transformation occurs near 39 GPa. The observed high-pressure phases of ThO2 and PuO2 exhibit similar diffraction spectra. Like for some other fluorite type compounds, the ThO2 and PuO2 high-pressure phase has been indexed in the PbCl2-type structure. The bulk modulus has been calculated as B0= 262 GPa with a pressure derivative of B0' = 6.7 for ThO2 and as B0 = 379 GPa with B0' = 2.4 for PuO2. The volume decrease at the transition is 12% for PuO2 and 8% for ThO2.  相似文献   

10.
Abstract

An experimental technique is described which enables one to measure the pressure-volume (P-V) relationship of solids and powder compacts and the linear compressibility of anisotropic single crystals by means of the resistive strain gauges at hydrostatic pressure up to 9 GPa. The potential of this technique is demostrated for solids possessing pressure induced phase transitions (PbTe, SmSe) and anisotropic crystals (Sb). For the first time P-V relationship is measured for highly compressible powder compact at increase and decrease of pressure.  相似文献   

11.
ABSTRACT

The high pressure tolerance of cysts of Artemia salina was investigated up to several GPa in water. No survival was observed after exposure to 1.0?GPa for 15?min. After exposure to 2.0?GPa for the same time duration, the hatching rate had recovered to 33%, but decreased to 8% following compression at 7.5?GPa. This contrasts with results using Fluorinert? as the pressure-transmitting medium where 80–88% recovery was observed. The lower survival rate in water is accompanied by swelling of the eggs, indicating that liquid H2O close to the ice-VI crystallization pressure penetrated inside the eggs. This pressure exceeds the stability limit for proteins and other key biomolecules components within the embryos that could not be resuscitated. Rehydration takes several minutes and so was not completed for all samples compressed to higher pressures, prior to ice-VI formation, resulting in renewed survival. However H2O penetration inside the shell resulted in increased mortality.  相似文献   

12.
Abstract

The proton radiation effects in ferrous chloride are studied by means of the Mössbauer spectroscopy. The irradiation with protons of energy of 0.68 to 1.5 MeV has been found to cause dehydration and chemical decomposition of ferrous chloride. FeCl2 · 2H2O, and Fe3O4 in superparamagnetic and ferromagnetic states, as well as Fe1?x O were formed. The formation of a superparamagnetic phase of Fe3O4 within the “spike” regions was verified by low temperature measurements. The effects observed were interpreted in terms of the “thermal spike” model. The calculated temperatures and radii of “spikes” formed by iron, chloride and oxygen ions are in good agreement with observation for superparamagnetic Fe3O4.  相似文献   

13.
Abstract

Phase transformations occurring in initially amorphous Zn41 Sb59 semiconductor at pressures to 10 GPa and temperatures to 350C were studied using the measurement of electrical resistance, in situ energy dispersive X-ray diffraction and neutron diffraction on quenched high-pressure phases at ambient pressure. The studied T- P region involves the regions of reversible and irreversible crystallisation and phase transitions between the equilibrium crystalline low-pressure and high-pressure phases.  相似文献   

14.
Abstract

α-Quartz was compressed at room temperature in a diamond-anvil cell without a medium to maximum pressures of 31 to 213 GPa and was studied by energy-dispersive synchrotron X-ray diffraction. Broad peaks observed in a previous high-pressure diffraction study of silica glass are evident in the present study of quartz compression, providing in situ confirmation of pressure-induced amorphization above 21 GPa. The 21-GPa crystalline-crystalline (quartz 1–11) transformation previously observed on quasihydrostatic compression of quartz is found to also occur under the current nonhydrostatic conditions, at the identical pressure. With nonhydrostatic compression, however, new sharp diffraction lines are observed at this pressure. The measurements show the coexistence of at least one amorphous and two crystalline phases above 21 GPa and below 43 GPa. The two crystalline phases are identified as quartz II and a new, high-pressure silica phase. The high-pressure phases, both crystalline and amorphous, can be quenched to ambient conditions from a maximum pressure of 43 GPa. With compression above 43 GPa, the diffraction pattern from quartz II is lost and the second crystalline phase persists to above 200 GPa.  相似文献   

15.
The structural behavior of natural lawsonite CaAl2Si2O7(OH)2 · H2O in aqueous and nonaqueous media (pressure up to 9.5 GPa) has been studied by synchrotron powder diffraction and Raman spectroscopy. The volume compressibility of lawsonite is found to be similar in both aqueous and nonaqueous media, while irreversible amorphization is observed only under compression in the aqueous medium to a pressure of about 6 GPa. Along with the observed increase in framework vibration frequencies, this reveals that the lawsonite structure is unstable when hydrostatic conditions of compression differ from those provided by crystallization of ice VII in an aqueous medium.  相似文献   

16.
Jing Chang  NiNa Ge  Ke Liu 《哲学杂志》2013,93(25):2182-2195
Abstract

A theoretical investigations on the structural stability and mechanical properties of Be3N2 crystallising in α and β phases was performed using first-principles calculations based on density functional theory. The obtained ground state structure and mechanical properties are in excellent agreement with the available experimental and theoretical data. A full elastic tensor and crystal anisotropy of Be3N2 in two phases are determined in the wide pressure range. Results indicated that the two phases of Be3N2 are mechanically stable and strongly pressure dependent in the range of pressure from 0 to 80 GPa. The superior mechanical properties show that the two phases of Be3N2 are potential candidate structures to be the hard material. And the α-Be3N2 has better mechanical properties than β-Be3N2. By the calculated B/G ratio, it is predicted that both phases are intrinsically brittleness and strongly prone to ductility when the pressure is above 65.6 and 68.5 GPa, respectively. Additionally, the pressure-induced elastic anisotropy analysis indicates that the elastically anisotropic of Be3N2 in both phases is strengthening with increasing pressure, and strongly dependent on the propagation direction.  相似文献   

17.

Magnetisation and magnetic susceptibility of a Lu2Fe17 single crystal have been studied under hydrostatic pressure up to 1.2 GPa at temperatures down to 5 K using a SQUID magnetometer. The ferromagnetic phase of Lu2Fe17 is suppressed rapidly above a critical pressure P C = 0.4 GPa in the whole temperature range below the critical temperature T C . A magnetic phase diagram of Lu2Fe17 has been constructed using results of the magnetic susceptibility measurements under pressure. A pressure induced incommensurate antiferromagnetic phase exhibits metamagnetic transitions with the increasing critical magnetic field H C under pressure. Taking into account recent neutron diffraction data, the pressure induced anisotropic changes of the lattice parameters of the Lu2Fe17 are discussed.  相似文献   

18.
X-ray diffraction and infrared spectroscopy of CaSO4 are conducted to pressures of 28 and 25 GPa, respectively. A reversible phase transition to the monoclinic monazite-structure occurs gradually between 2 and ∼5 GPa with a highly pressure-dependent volume change of ∼6-8%. A second-order fit of the X-ray data to the Birch-Murnaghan equation of state yields a bulk modulus (K) of 151.2 (±21.4) GPa for the high-pressure monoclinic phase. In the high-pressure infrared spectrum, the infrared-active asymmetric stretching and bending vibrations of the sulfate tetrahedra split at the phase transition, in accord with the results of factor group analysis. Additionally, the tetrahedral symmetric stretching vibration, which is weak in the anhydrite phase, becomes strongly resolved at the transition to the monazite structure. The infrared results indicate that the sulfate tetrahedra are more distorted in the monazite-structured phase than in anhydrite. Kinetic calculations indicate that the anhydrite to monazite transformation may generate the phase transition observed near 30 GPa under shock loading in CaSO4. Our results indicate that the anhydrite- and monazite-structured phases may be the only phases that occur under shock loading of CaSO4 to pressures in excess of 100 GPa.  相似文献   

19.
Charge transport has been investigated in new disordered carbon phases synthesized from C60 at “moderate” pressures P syn < 1.5 GPa and high temperatures T syn > 1000 K. Under these synthesis conditions, a structure transition from nanographite phases to new amorphous modifications is induced when pressure decreases. The transition from hopping transport to diffusive electron transport typical of “dirty” metals is observed in a number of samples synthesized at various pressures and temperatures in the indicated ranges. The magnetotransport properties of these phases under intermediate synthesis conditions can be described by diffusive electron transport.  相似文献   

20.
Abstract

The development of the diamond-anvil cell has stimulated Raman-scattering investigation of vibrational modes in covalent crystals. The linear pressure coefficient reported for diamond by Hanfland et at' (2.90 ± 0.05 cm-1/GPa) agrees to within mutual experimental error with the result of Boppard et aL2 (2.87±0.01 cm-1/GPa). As to cubic boron nitride, the only work by Sanjurjo ef aL3 reports 3.45 ± 0.07 cm-1/GPa for LO- and 3.39 ± 0.08 cm-1/GPa for TO- modes. Since no compressibility data are availablel1?3, the mode Griineisen parameter γ = ‐ δ In γ/δ is defined as y = K/Y·dv/aP and depends on the bulk modulus K and the calibration of the ruby scale. The above papers report y= 0.96 and y=0.95±O.O3fordiamondand γLo=1.21,γTo=1.51 forBN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号