首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The five singly and doubly hydrogen bonded dimers of formamide are calculated at the correlated level by using resolution of identity M?ller-Plesset second-order perturbation theory (RIMP2) and the coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] method. All structures are optimized with the Dunning aug-cc-pVTZ and aug-cc-pVQZ basis sets. The binding energies are extrapolated to the complete basis set (CBS) limit by using the aug-cc-pVXZ (X = D, T, Q) basis set series. The effect of extending the basis set to aug-cc-pV5Z on the geometries and binding energies is studied for the centrosymmetric doubly N-H...O bonded dimer FA1 and the doubly C-H...O bonded dimer FA5. The MP2 CBS limits range from -5.19 kcal/mol for FA5 to -14.80 kcal/mol for the FA1 dimer. The DeltaCCSD(T) corrections to the MP2 CBS limit binding energies calculated with the 6-31+G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets are mutually consistent to within < or =0.03 kcal/mol. The DeltaCCSD(T) correction increases the binding energy of the C-H...O bonded FA5 dimer by 0.4 kcal/mol or approximately 9% over the distance range +/-0.5 Angstrom relative to the potential minimum. This implies that the ubiquitous long-range C-H...O interactions in proteins are stronger than hitherto calculated.  相似文献   

2.
The hydrogen-bonded complexes of the nucleobase mimic 2-pyridone (2PY) with seven different fluorinated benzenes (1-, 1,2-, 1,4-, 1,2,3-, 1,3,5-, 1,2,3,4-, and 1,2,4,5-fluorobenzene) are important model systems for investigating the relative importance of hydrogen bonding versus pi-stacking interactions in DNA. We have shown by supersonic-jet spectroscopy that these dimers are hydrogen bonded and not pi-stacked at low temperature (Leist, R.; Frey, J. A.; Leutwyler, S. J. Phys. Chem. A 2006, 110, 4180). Their geometries and binding energies D(e) were calculated using the resolution of identity (RI) M?ller-Plesset second-order perturbation theory method (RIMP2). The most stable dimers are bound by antiparallel N-H...F-C and C-H...O=C hydrogen bonds. The binding energies are extrapolated to the complete basis set (CBS) limit, , using the aug-cc-pVXZ basis set series. The CBS binding energies range from -D(e,CBS) = 6.4-6.9 kcal/mol and the respective dissociation energies from -D(0,CBS) = 5.9-6.3 kcal/mol. In combination with experiment, the latter represent upper limits to the dissociation energies of the pi-stacked isomers (which are not observed experimentally). The individual C-H...O=C and N-H...F-C contributions to D(e) can be approximately separated. They are nearly equal for 2PY.fluorobenzene; each additional F atom strengthens the C-H...O=C hydrogen bond by approximately 0.5 kcal/mol and weakens the C-F...H-N hydrogen bond by approximately 0.3 kcal/mol. The single H-bond strengths and lengths correlate with the gas-phase acid-base properties of the C-H and C-F groups of the fluorobenzenes.  相似文献   

3.
4.
The binding energies of thirty-six hydrogen-bonded peptide-base complexes, including the peptide backbone-ase complexes and amino acid side chain-base complexes, are evaluated using the analytic potential energy function established in our lab recently and compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparison indicates that the analytic potential energy function yields the binding energies for these complexes as reasonable as MP2 does, much better than the force fields do. The individual N H…O=C, N H…N, C H…O=C, and C H…N attractive interaction energies and C=O…O=C, N H…H N, C H…H N, and C H…H C repulsive interaction energies, which cannot be easily obtained from ab initio calculations, are calculated using the dipole-dipole interaction term of the analytic potential energy function. The individual N H…O=C, C H…O=C, C H…N attractive interactions are about 5.3±1.8, 1.2±0.4, and 0.8 kcal/mol, respectively, the individual N H … N could be as strong as about 8.1 kcal/mol or as weak as 1.0 kcal/mol, while the individual C=O…O=C, N H…H N, C H…H N, and C H…H C repulsive interactions are about 1.8±1.1, 1.7±0.6, 0.6±0.3, and 0.35±0.15 kcal/mol. These data are helpful for the rational design of new strategies for molecular recognition or supramolecular assemblies.  相似文献   

5.
The C-H sigma-bond activation of methane and the N-H sigma-bond activation of ammonia by (Me3SiO)2Ti(=NSiMe3) 1 were theoretically investigated with DFT, MP2 to MP4(SDQ), and CCSD(T) methods. The C-H sigma-bond activation of methane takes place with an activation barrier (Ea) of 14.6 (21.5) kcal/mol and a reaction energy (DeltaE) of -22.7 (-16.5) kcal/mol to afford (Me3SiO)2Ti(Me)[NH(SiMe3)], where DFT- and MP4(SDQ)-calculated values are given without and in parentheses, respectively, hereafter. The electron population of the CH3 group increases, but the H atomic population decreases upon going to the transition state from the precursor complex, which indicates that the C-H sigma-bond activation occurs in heterolytic manner unlike the oxidative addition. The Ti atomic population considerably increases upon going to the transition state from the precursor complex, which indicates that the charge transfer (CT) occurs from methane to Ti. These population changes are induced by the orbital interactions among the d(pi)-p(pi) bonding orbital of the Ti=NSiMe3 moiety, the Ti d(z2) orbital and the C-H sigma-bonding and sigma*-antibonding orbitals of methane. The reverse regioselective C-H sigma-bond activation which leads to formation of (Me3SiO)2Ti(H)[NMe(SiMe3)] takes place with a larger Ea value and smaller exothermicity. The reasons are discussed in terms of Ti-H, Ti-CH3, Ti-NH3, N-H, and N-CH3 bond energies and orbital interactions in the transition state. The N-H sigma-bond activation of ammonia takes place in a heterolytic manner with a larger Ea value of 19.0 (27.9) kcal/mol and considerably larger exothermicity of -45.0 (-39.4) kcal/mol than those of the C-H sigma-bond activation. The N-H sigma-bond activation of ammonia by a Ti-alkylidyne complex, [(PNP)Ti(CSiMe3)] 3 (PNP = N-[2-(PH2)2-phenyl]2-]) ,was also investigated. This reaction takes place with a smaller E(a) value of 7.5 (15.3) kcal/mol and larger exothermicity of -60.2 (-56.1) kcal/mol. These results lead us to predict that the N-H sigma-bond activation of ammonia can be achieved by these complexes.  相似文献   

6.
Stacking energies in low-energy geometries of pyrimidine, uracil, cytosine, and guanine homodimers were determined by the MP2 and CCSD(T) calculations utilizing a wide range of split-valence, correlation-consistent, and bond-functions basis sets. Complete basis set MP2 (CBS MP2) stacking energies extrapolated using aug-cc-pVXZ (X = D, T, and for pyrimidine dimer Q) basis sets equal to -5.3, -12.3, and -11.2 kcal/mol for the first three dimers, respectively. Higher-order correlation corrections estimated as the difference between MP2 and CCSD(T) stacking energies amount to 2.0, 0.7, and 0.9 kcal/mol and lead to final estimates of the genuine stacking energies for the three dimers of -3.4, -11.6, and -10.4 kcal/mol. The CBS MP2 stacking-energy estimate for guanine dimer (-14.8 kcal/mol) was based on the 6-31G(0.25) and aug-cc-pVDZ calculations. This simplified extrapolation can be routinely used with a meaningful accuracy around 1 kcal/mol for large aromatic stacking clusters. The final estimate of the guanine stacking energy after the CCSD(T) correction amounts to -12.9 kcal/mol. The MP2/6-31G(0.25) method previously used as the standard level to calculate aromatic stacking in hundreds of geometries of nucleobase dimers systematically underestimates the base stacking by ca. 1.0-2.5 kcal/mol per stacked dimer, covering 75-90% of the intermolecular correlation stabilization. We suggest that this correction is to be considered in calibration of force fields and other cheaper computational methods. The quality of the MP2/6-31G(0.25) predictions is nevertheless considerably better than suggested on the basis of monomer polarizability calculations. Fast and very accurate estimates of the MP2 aromatic stacking energies can be achieved using the RI-MP2 method. The CBS MP2 calculations and the CCSD(T) correction, when taken together, bring only marginal changes to the relative stability of H-bonded and stacked base pairs, with a slight shift of ca. 1 kcal/mol in favor of H-bonding. We suggest that the present values are very close to ultimate predictions of the strength of aromatic base stacking of DNA and RNA bases.  相似文献   

7.
Accurate binding energies of the benzene dimer at the T and parallel displaced (PD) configurations were determined using the single- and double-coupled cluster method with perturbative triple correction (CCSD(T)) with correlation-consistent basis sets and an effective basis set extrapolation scheme recently devised. The difference between the estimated CCSD(T) basis set limit electronic binding energies for the T and PD shapes appears to amount to more than 0.3 kcal/mol, indicating the PD shape is a more stable configuration than the T shape for this dimer in the gas phase. This conclusion is further strengthened when a vibrational zero-point correction to the electronic binding energies of this dimer is made, which increases the difference between the two configurations to 0.4-0.5 kcal/mol. The binding energies of 2.4 and 2.8 kcal/mol for the T and PD configurations are in good accord with the previous experimental result from ionization potential measurement.  相似文献   

8.
Aqueous solutions of rhodium(III) tetra p-sulfonatophenyl porphyrin ((TSPP)Rh(III)) complexes react with dihydrogen to produce equilibrium distributions between six rhodium species including rhodium hydride, rhodium(I), and rhodium(II) dimer complexes. Equilibrium thermodynamic studies (298 K) for this system establish the quantitative relationships that define the distribution of species in aqueous solution as a function of the dihydrogen and hydrogen ion concentrations through direct measurement of five equilibrium constants along with dissociation energies of D(2)O and dihydrogen in water. The hydride complex ([(TSPP)Rh-D(D(2)O)](-4)) is a weak acid (K(a)(298 K) = (8.0 +/- 0.5) x 10(-8)). Equilibrium constants and free energy changes for a series of reactions that could not be directly determined including homolysis reactions of the Rh(II)-Rh(II) dimer with water (D(2)O) and dihydrogen (D(2)) are derived from the directly measured equilibria. The rhodium hydride (Rh-D)(aq) and rhodium hydroxide (Rh-OD)(aq) bond dissociation free energies for [(TSPP)Rh-D(D(2)O)](-4) and [(TSPP)Rh-OD(D(2)O)](-4) in water are nearly equal (Rh-D = 60 +/- 3 kcal mol(-1), Rh-OD = 62 +/- 3 kcal mol(-1)). Free energy changes in aqueous media are reported for reactions that substitute hydroxide (OD(-)) (-11.9 +/- 0.1 kcal mol(-1)), hydride (D(-)) (-54.9 kcal mol(-1)), and (TSPP)Rh(I): (-7.3 +/- 0.1 kcal mol(-1)) for a water in [(TSPP)Rh(III)(D(2)O)(2)](-3) and for the rhodium hydride [(TSPP)Rh-D(D(2)O)](-4) to dissociate to produce a proton (9.7 +/- 0.1 kcal mol(-1)), a hydrogen atom (approximately 60 +/- 3 kcal mol(-1)), and a hydride (D(-)) (54.9 kcal mol(-1)) in water.  相似文献   

9.
Dimers composed of benzene (Bz), 1,3,5-triazine (Tz), cyanogen (Cy) and diacetylene (Di) are used to examine the effects of heterogeneity at the molecular level and at the cluster level on pi...pi stacking energies. The MP2 complete basis set (CBS) limits for the interaction energies (E(int)) of these model systems were determined with extrapolation techniques designed for correlation consistent basis sets. CCSD(T) calculations were used to correct for higher-order correlation effects (deltaE(CCSD)(T)(MP2)) which were as large as +2.81 kcal mol(-1). The introduction of nitrogen atoms into the parallel-slipped dimers of the aforementioned molecules causes significant changes to E(int). The CCSD(T)/CBS E(int) for Di-Cy is -2.47 kcal mol(-1) which is substantially larger than either Cy-Cy (-1.69 kcal mol(-1)) or Di-Di (-1.42 kcal mol(-1)). Similarly, the heteroaromatic Bz-Tz dimer has an E(int) of -3.75 kcal mol(-1) which is much larger than either Tz-Tz (-3.03 kcal mol(-1)) or Bz-Bz (-2.78 kcal mol(-1)). Symmetry-adapted perturbation theory calculations reveal a correlation between the electrostatic component of E(int) and the large increase in the interaction energy for the mixed dimers. However, all components (exchange, induction, dispersion) must be considered to rationalize the observed trend. Another significant conclusion of this work is that basis-set superposition error has a negligible impact on the popular deltaE(CCSD)(T)(MP2) correction, which indicates that counterpoise corrections are not necessary when computing higher-order correlation effects on E(int). Spin-component-scaled MP2 (SCS-MP2 and SCSN-MP2) calculations with a correlation-consistent triple-zeta basis set reproduce the trends in the interaction energies despite overestimating the CCSD(T)/CBS E(int) of Bz-Tz by 20-30%.  相似文献   

10.
The accurate interaction energies of the CH/pi interaction in the benzene-X clusters (X = ethylene and acetylene) were experimentally and theoretically determined. Two-color multiphoton ionization spectroscopy was applied, and the binding energies in the neutral ground state of the clusters were evaluated from the dissociation threshold measurements of the cluster cations. The experimental binding energies of the clusters (D0) were 1.4+/-0.2 and 2.7+/-0.2 kcal/mol, respectively. Estimated CCSD(T) interaction energies for the clusters at the basis set limit (De) were 2.2 and 2.8 kcal/mol, respectively. Calculated D0 values (1.7 and 2.4 kcal/mol, respectively) are close to the experimental values. Large electron correlation contributions (Ecorr=-3.6 and -2.8 kcal/mol, respectively) show that dispersion is the major source of the attraction in both clusters. The electrostatic interaction in the ethylene cluster is very small (-0.38 kcal/mol), as in the case of the benzene-methane cluster, whereas the electrostatic interaction in the acetylene cluster is large (-1.70 kcal/mol). The shifts of the S1-S0 transition also suggest that the ethylene cluster is a van der Waals-type cluster, but the acetylene cluster is a pi-hydrogen-bonded cluster. The nature of the CH/pi interaction of the "activated" alkyne C-H bond is significantly different from that of the "nonactivated" (or typical) alkane and alkene C-H bonds.  相似文献   

11.
The diatomic gold halides AuX are studied by means of Fourier-transform ion cyclotron resonance mass spectroscopy and ab initio theory at a quasi-relativistic CCSD(T) level of theory. A thermokinetic approach is used to determine the bond-dissociation energies of neutral AuCl, AuBr, and AuI as well as cationic AuI+, i.e., D(0)(Au-Cl) = 66 +/- 3 kcal/mol, D(0)(Au-Br) = 50 +/- 5 kcal/mol, as well as the brackets 52 kcal/mol < D(0)(Au-I) < 64 kcal/mol and 54 kcal/mol < D(0)(Au+-I) < 66 kcal/mol at 0 K. These values allow an evaluation of previous experimental and theoretical data concerning diatomic gold halides.  相似文献   

12.
A 3-body:many-body integrated quantum mechanical (QM) fragmentation method for non-covalent clusters is introduced within the ONIOM formalism. The technique captures all 1-, 2-, and 3-body interactions with a high-level electronic structure method, while a less demanding low-level method is employed to recover 4-body and higher-order interactions. When systematically applied to 40 low-lying (H(2)O)(n) isomers ranging in size from n = 3 to 10, the CCSD(T):MP2 3-body:many-body fragmentation scheme deviates from the full CCSD(T) interaction energy by no more than 0.07 kcal mol(-1) (or <0.01 kcal mol(-1) per water). The errors for this QM:QM method increase only slightly for various low-lying isomers of (H(2)O)(16) and (H(2)O)(17) (always within 0.13 kcal mol(-1) of the recently reported canonical CCSD(T)/aug-cc-pVTZ energies). The 3-body:many-body CCSD(T):MP2 procedure is also very efficient because the CCSD(T) computations only need to be performed on subsets of the cluster containing 1, 2, or 3 monomers, which in the current context means the largest CCSD(T) calculations are for 3 water molecules, regardless of the cluster size.  相似文献   

13.
Computation of accurate intramolecular hydrogen-bonding energies for peptides is of great importance in understanding the conformational stabilities of peptides and developing a more accurate force field for proteins. We have proposed a method to determine the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies in glycine and alanine peptides. In this article, the method is further applied to evaluate the intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies in peptides. The optimal structures of the intramolecular 10-membered ring N-H...O=C hydrogen bonds in glycine and alanine tripetide molecules are obtained at the MP2 level with 6-31G(d), 6-31G(d,p), and 6-31+G(d,p) basis sets. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are then evaluated based on our method at the MP2/6-311++G(3df,2p) level with basis set superposition error correction. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are calculated to be in the range of -6.84 to -7.66, -4.44 to -4.98, and -6.95 to -7.88 kcal/mol. The method is also applied to estimate the individual intermolecular hydrogen-bonding energies in the dimers of amino-acetaldehyde, 2-amino-acetamide, formamide, and oxalamide, each dimer having two identical intermolecular hydrogen bonds. According to our method, the individual intermolecular hydrogen-bonding energies in the four dimers are calculated to be -1.77, -1.67, -6.35, and -4.82 kcal/mol at the MP2/6-311++G(d,p) level, which are in good agreement with the values of -1.84, -1.72, -6.23, and -4.93 kcal/mol predicted by the supermolecular method.  相似文献   

14.
Despite the widespread use of boronic acids in materials science and as pharmaceutical agents, many aspects of their structure and reactivity are not well understood. In this research the boronic acid dimer, [HB(OH)(2)](2), was studied by second-order M?ller-Plesset (MP2) perturbation theory and coupled cluster methodology with single and double excitations (CCSD). Pople split-valence 6-31+G*, 6-311G**, and 6-311++G** and Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the calculations. A doubly hydrogen-bonded conformer (1) of the dimer was consistently found to be lowest in energy; the structure of 1 was planar (C(2h)) at most computational levels employed but was significantly nonplanar (C(2)) at the MP2/6-311++G** and CCSD/6-311++G** levels, the result of an intrinsic problem with Pople-type sp-diffuse basis functions on heavy atoms. The dimerization energy, enthalpy, and free energy for the formation of (1) from the exo-endo conformer of the monomer were -10.8, -9.2, and +1.2 kcal/mol, respectively, at the MP2/aug-cc-pVTZ level. Several other hydrogen-bonded conformers of the dimer were local minima on the potential energy surface (PES) and ranged from 2 to 5 kcal/mol higher in energy than 1. Nine doubly OH-bridged conformers, in which the boron atoms were tetracoordinated, were also local minima on the PES, but they were all greater than 13 kcal/mol higher in energy than 1; doubly H-bridged structures proved to be transition states. MP2 and CCSD results were compared to those from the BLYP, B3LYP, OLYP, O3LYP, PBE1PBE, and TPSS functionals with the 6-311++G** and aug-cc-pVTZ basis sets; the PBE1PBE functional performed best relative to the MP2 and CCSD results. Self-consistent reaction field (SCRF) calculations predict that boronic acid dimerization is less favorable in solution than in vacuo.  相似文献   

15.
The gas phase and solvent dependent preference of the tautomerization between 2-pyridinethiol (2SH) and 2-pyridinethione (2S) has been assessed using variable temperature Fourier transform infrared (FTIR) experiments, as well as ab initio and density functional theory computations. No spectroscopic evidence (nu(S)(-)(H) stretch) for 2SH was observed in toluene, C(6)D(6), heptane, or methylene chloride solutions. Although, C(s)() 2SH is 2.61 kcal/mol more stable than C(s)() 2S (CCSD(T)/cc-pVTZ//B3LYP/6-311+G(3df,2p)+ZPE), cyclohexane solvent-field relative energies (IPCM-MP2/6-311+G(3df,2p)) favor 2S by 1.96 kcal/mol. This is in accord with the FTIR observations and in quantitative agreement with the -2.6 kcal/mol solution (toluene or C(6)D(6)) calorimetric enthalpy for the 2S/2SH tautomerization favoring the thione. As the intramolecular transition state for the 2S, 2SH tautomerization (2TS) lies 25 (CBS-Q) to 30 kcal/mol (CCSD/cc-pVTZ) higher in energy than either tautomer, tautomerization probably occurs in the hydrogen bonded dimer. The B3LYP/6-311+G(3df,2p) optimized C(2) 2SH dimer is 10.23 kcal/mol + ZPE higher in energy than the C(2)(h)() 2S dimer and is only 2.95 kcal/mol + ZPE lower in energy than the C(2) 2TS dimer transition state. Dimerization equilibrium measurements (FTIR, C(6)D(6)) over the temperature range 22-63 degrees C agree: K(eq)(298) = 165 +/- 40 M(-)(1), DeltaH = -7.0 +/- 0.7 kcal/mol, and DeltaS = -13.4 +/- 3.0 cal/(mol deg). The difference between experimental and B3LYP/6-311+G(3df,2p) [-34.62 cal/(mol deg)] entropy changes is due to solvent effects. The B3LYP/6-311+G(3df,2p) nucleus independent chemical shifts (NICS) are -8.8 and -3.5 ppm 1 A above the 2SH and 2S ring centers, respectively, and the thiol is aromatic. Although the thione is not aromatic, it is stabilized by the thioamide resonance. In solvent, the large 2S dipole, 2-3 times greater than 2SH, favors the thione tautomer and, in conclusion, 2S is thermodynamically more stable than 2SH in solution.  相似文献   

16.
Small hydrocarbon complexes (X@cage) incorporating cage-centered endohedral atoms and ions (X = H(+), H, He, Ne, Ar, Li(0,+), Be(0,+,2+), Na(0,+), Mg(0,+,2+)) have been studied at the B3LYP/6-31G(d) hybrid HF/DFT level of theory. No tetrahedrane (C(4)H(4), T(d)()) endohedral complexes are minima, not even with the very small hydrogen atom or beryllium dication. Cubane (C(8)H(8), O(h)()) and bicyclo[2.2.2]octane (C(8)H(14), D(3)(h)()) minima are limited to encapsulating species smaller than Ne and Na(+). Despite its intermediate size, adamantane (C(10)H(16), T(d)()) can enclose a wide variety of endohedral atoms and ions including H, He, Ne, Li(0,+), Be(0,+,2+), Na(0,+), and Mg(2+). In contrast, the truncated tetrahedrane (C(12)H(12), T(d)()) encapsulates fewer species, while the D(4)(d)() symmetric C(16)H(16) hydrocarbon cage (see Table of Contents graphic) encapsulates all but the larger Be, Mg, and Mg(+) species. The host cages have more compact geometries when metal atoms, rather than cations, are inside. This is due to electron donation from the endohedral metals into C-C bonding and C-H antibonding cage molecular orbitals. The relative stabilities of endohedral minima are evaluated by comparing their energies (E(endo)) to the sum of their isolated components (E(inc) = E(endo) - E(cage) - E(x)) and to their exohedral isomer energies (E(isom) = E(endo) - E(exo)). Although exohedral binding is preferred to endohedral encapsulation without exception (i.e., E(isom) is always exothermic), Be(2+)@C(10)H(16) (T(d)(); -235.5 kcal/mol), Li(+)@C(12)H(12) (T(d)(); 50.2 kcal/mol), Be(2+)@C(12)H(12) (T(d)(); -181.2 kcal/mol), Mg(2+)@C(12)H(12) (T(d)(); -45.0 kcal/mol), Li(+)@C(16)H(16) (D(4)(d)(); 13.3 kcal/mol), Be(+)@C(16)H(16) (C(4)(v)(); 31.8 kcal/mol), Be(2+)@C(16)H(16) (D(4)(d)(); -239.2 kcal/mol), and Mg(2+)@C(16)H(16) (D(4)(d)(); -37.7 kcal/mol) are relatively stable as compared to experimentally known He@C(20)H(20) (I(h)()), which has an E(inc) = 37.9 kcal/mol and E(isom) = -35.4 kcal/mol. Overall, endohedral cage complexes with low parent cage strain energies, large cage internal cavity volumes, and a small, highly charged guest species are the most viable synthetic targets.  相似文献   

17.
The intermolecular interaction energies of naphthalene dimers have been calculated by using an aromatic intermolecular interaction model (a model chemistry for the evaluation of intermolecular interactions between aromatic molecules). The CCSD(T) (coupled cluster calculations with single and double substitutions with noniterative triple excitations) interaction energy at the basis set limit has been estimated from the second-order M?ller-Plesset perturbation interaction energy near saturation and the CCSD(T) correction term obtained using a medium-size basis set. The estimated interaction energies of the set of geometries explored in this work show that two structures emerge as being the lowest energy, and may effectively be considered as isoenergetic on the basis of the errors inherent in out extrapolation procedure. These structures are the slipped-parallel (Ci) structure (-5.73 kcal/mol) and the cross (D2d) structure (-5.28 kcal/mol). The T-shaped (C2v) and sandwich (D2h) dimers are substantially less stable (-4.34 and -3.78 kcal/mol, respectively). The dispersion interaction is found to be the major source of attraction in the naphthalene dimer. The electrostatic interaction is substantially smaller than the dispersion interaction. The large dispersion interaction is the cause of the large binding energies of the cross and slipped-parallel dimers.  相似文献   

18.
The Stark effect has been observed in the rotational spectra of several gas-phase amine-hydrogen halide complexes and the following electric dipole moments have been determined: H(3)(15)N-H(35)Cl (4.05865 +/- 0.00095 D), (CH(3))(3)(15)N-H(35)Cl (7.128 +/- 0.012 D), H(3)(15)N-H(79)Br (4.2577 +/- 0.0022 D), and (CH(3))(3)(15)N-H(79)Br (8.397 +/- 0.014 D). Calculations of the binding energies and electric dipole moments for the full set of complexes R(n)()(CH(3))(3)(-)(n)()N-HX (n = 0-3; X = F, Cl, Br) at the MP2/aug-cc-pVDZ level are also reported. The block localized wave function (BLW) energy decomposition method has been used to partition the binding energies into contributions from electrostatic, exchange, distortion, polarization, and charge-transfer terms. Similarly, the calculated dipole moments have been decomposed into distortion, polarization, and charge-transfer components. The complexes studied range from hydrogen-bonded systems to proton-transferred ion pairs, and the total interaction energies vary from 7 to 17 kcal/mol across the series. The individual energy components show a much wider variation than this, but cancellation of terms accounts for the relatively narrow range of net binding energies. For both the hydrogen-bonded complexes and the proton-transferred ion pairs, the electrostatic and exchange terms have magnitudes that increase with the degree of proton transfer but are of opposite sign, leaving most of the net stabilization to arise from polarization and charge transfer. In all of the systems studied, the polarization terms contribute the most to the induced dipole moment, followed by smaller but still significant contributions from charge transfer. A significant contribution to the induced moment of the ion pairs also arises from distortion of the HX monomer.  相似文献   

19.
Results of gradient-corrected periodic density functional theory calculations are reported for hydrogen abstraction from methane at O(s)(2-), O(s)(-), O(2)(s)(2-) point defect, and Sr(2+)-doped surface sites on La(2)O(3)(001). The results show that the anionic O(s)(-) species is the most active surface oxygen site. The overall reaction energy to activate methane at an O(s)(-) site to form a surface hydroxyl group and gas-phase (*)CH(3) radical is 8.2 kcal/mol, with an activation barrier of 10.1 kcal/mol. The binding energy of hydrogen at an site O(s)(-) is -102 kcal/mol. An oxygen site with similar activity can be generated by doping strontium into the oxide by a direct Sr(2+)/La(3+) exchange at the surface. The O(-)-like nature of the surface site is reflected in a calculated hydrogen binding energy of -109.7 kcal/mol. Calculations indicate that surface peroxide (O(2(s))(2-)) sites can be generated by adsorption of O(2) at surface oxygen vacancies, as well as by dissociative adsorption of O(2) across the closed-shell oxide surface of La(2)O(3)(001). The overall reaction energy and apparent activation barrier for the latter pathway are calculated to be only 12.1 and 33.0 kcal/mol, respectively. Irrespective of the route to peroxide formation, the O(2)(s)(2-) intermediate is characterized by a bent orientation with respect to the surface and an O-O bond length of 1.47 A; both attributes are consistent with structural features characteristic of classical peroxides. We found surface peroxide sites to be slightly less favorable for H-abstraction from methane than the O(s)(-) species, with DeltaE(rxn)(CH(4)) = 39.3 kcal/mol, E(act) = 47.3 kcal/mol, and DeltaE(ads)(H) = -71.5 kcal/mol. A possible mechanism for oxidative coupling of methane over La(2)O(3)(001) involving surface peroxides as the active oxygen source is suggested.  相似文献   

20.
The hydrogen-abstracted radicals from the adenine-uracil (AU) base pair have been studied at the B3LYP/DZP++ level of theory. The A(N9)-U and A-U(N1) radicals, which correspond to hydrogen-atom abstraction at the adenine N9 and uracil N1 atoms, respectively, were predicted to be the two lowest-lying among the nine (AU-H) radicals studied in this study. The removal of the amino hydrogen of the adenine moiety that forms a hydrogen bond with the uracil O4 atom in the AU pair resulted in radical A(N6a)-U, which has the smallest base-pair dissociation energy, 5.9 kcal mol(-1). This radical is more likely to dissociate into the two isolated bases than to recover the hydrogen bond with the O4 atom through N6-H bond rotation along the C6-N6 bond. In general, the radicals generated by C-H bond breaking were higher in energy than those arising from N-H bond cleavage, because the unpaired electrons in the carbon-centered radicals were mainly localized on the carbon atom from which the hydrogen atom was removed. However, the highest-lying radical was found to arise from removal of the N3 hydrogen of uracil. The most remarkable structural feature of this radical is a very short C-H...O distance of 2.094 A, consistent with a substantial hydrogen bond. Although this radical lost the N1...H-N3 hydrogen bond between the two bases, its dissociation energy was predicted to be 12.9 kcal mol(-1), similar to that of the intact AU base pair. This is due to the transfer of electron density from the adenine N1 atom to the uracil N3 atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号