首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pu X  Hu B  Jiang Z  Huang C 《The Analyst》2005,130(8):1175-1181
A method has been developed for the speciation of trace dissolved Fe(II) and Fe(III) in water by coupling gallic acid (GA) modified nanometer-sized alumina micro-column separation with inductively coupled plasma mass spectrometry (ICP-MS). The separation of Fe(II) and Fe(III) was achieved based on the obvious difference in reaction kinetics between Fe(II) and Fe(III) with GA. Fe(III) was selectively retained on the micro-column at pH 5.5-6.5, while Fe(II) could not be retained by the micro-column at the whole tested pH range of 1.0-6.5, and passed through the micro-column. The Fe(II) can be determined by ICP-MS directly without preconcentration/separation procedure, while Fe(III) retained on the micro-column was then eluted with 1.0 mL of 1 mol L(-1) HCl and determined by ICP-MS. The parameters affecting the separation of Fe(II) and Fe(III) were investigated systematically and the optimum separation conditions were established. Under the optimized conditions, the detection limits of 0.48 microg L(-1) and 0.24 microg L(-1) with relative standard deviation of 5.6% and 4.3%(C= 5 microg L(-1), n= 7) for Fe(II) and Fe(III) were found, respectively. No obvious effect on the speciation of Fe(II) and Fe(III) was found with the change of the ratio of Fe(II) and Fe(III) from 0 ratio 10 to 10 ratio 0. The proposed method was applied for the determination of trace Fe(II) and Fe(III) in environmental water and the recoveries for spiked samples were found to be in the range of 97-105%.  相似文献   

2.
Pyrrolidinedithiocarbamate (PDTC) chelates of Zn(II), Cu(II), Ni(II), Co(III), Fe(III), Mn(II), Cr(III), and VO(II) were analysed by capillary GC on a DB-1701 column (30 m x 0.25 mm id) with flame ionisation detection (FID). Linear calibrations were attained within "1-30 microg/mL" for Ni(II), Fe(III), Mn(II), Cr(III), Cu(II), and VO(II), and within "2-50 microg/mL" for Co(III) and Zn(II). The limits of detection were in the "150-500 ng/mL" range, corresponding to 15-50 pg amounts reaching the FID system. The optimised method was applied to the determination of Cu(II) and Ni(II) in coins, and that of Zn(II), Cu(II), Ni(II), Fe(III), Mn(II), Cr(III), and VO(II) in pharmaceutical preparations with relative standard deviations within 1.1-5.2%. The results obtained are in good agreement with sewage water samples and the declared values for the pharmaceutical formulations, or with the results of AAS of metal contents in coins, pharmaceutical preparations, and sewage water samples.  相似文献   

3.
Speciation of arsenic in environmental samples gains increasingly importance, as the toxic effects of arsenic are related to its oxidation state. A method was developed for the determination of trace amounts of arsenic (III) and total arsenic by flow injection hydride generation coupled with an in-house made non-dispersive AAS device. The total arsenic is determined after prereduction of arsenic (V) to arsenic (III) with L-cysteine in a low concentration of hydrochloric, acetic or nitric acid. The conditions for the prereduction, hydride generation and atomization were systematically investigated. A quartz tube temperature of 800 degrees C was found to be optimum in view of peak shape and baseline stability. Pb(II), Ni(II), Fe(III), Cu(II), Ag(I), Al(III), Ga(II), Se(IV), Bi(III) were checked for interfering with the 2 microg/L As(V) signal. A serious signal depression was only observed for Se(IV) and Bi(III) at a 150-fold excess. With the above system, arsenic was determined at a sampling frequency of about 1/min with a detection limit (3sigma) of 0.01 microg/L using a 0.5 mL sample. The reagent blank was 0.001+/-0.0003 absorbance units and the standard deviation of 10 measurements of the 2 microg/l As signal was found to be 1.2%. Results obtained for standard reference materials and water samples are in good agreement with the certified values and those obtained by ICP-MS  相似文献   

4.
Two spectrophotometric methods, a photochemical and a non-photochemical, for the determination of ascorbic acid in soft drinks and beer using a flow-injection system are proposed. The non-photochemical method is based on the redox reaction that takes place between ascorbic acid and Fe(III), yielding dehydroascorbic acid and Fe(II). Fe(II) reacts with 1,10-phenantroline, originating the reddish orange Fe(phen)3(2+) complex (ferroin). This complex is spectrophotometrically monitored at 512 nm, and the signal is directly related to the concentration of ascorbic acid in the sample. The photochemical method has the same basis, nevertheless, uses the irradiation with visible light to enhance the redox reaction and so achieve higher sensitivities in the analysis. The non-photochemical method shows a linear range between 5 and 80 microg mL(-1), with a relative standard deviation of 1.6% (n = 11), a detection limit of 2.7 microg mL(-1) and a sample throughput of 60 samples h(-1). The photochemical method shows a linear range between 1 and 80 microg mL(-1), with a relative standard deviation of 1.0% (n = 11 ), a detection limit of 0.5 microg mL(-1) and a sample throughput of 40 samples h(-1).  相似文献   

5.
A novel chemiluminescence (CL) flow system has been developed for the sequential determination of Fe(II) and Fe(III) in water. Fe(II) was detected by its catalytic effect on the CL reaction between luminol immobilized on an anion exchange resin column and dissolved oxygen; Fe(III) was determined by difference measurement after on-line conversion to Fe(II) in a reducing mini-column packed with Cu plated Zn granules. For both ions, the calibration graph was linear in the range 1 × 10–9 to 1 × 10–6 g/mL, and the detection limit was 4 × 10–10 g/mL. A complete analysis could be performed in 1.5 min with a relative standard deviation of less than 5%. The system could be reused for over 200 times and has been applied successfully to the determination of Fe(II) and Fe(III) in natural water samples.  相似文献   

6.
Yttrium hydroxide quantitatively coprecipitated Be(II), Ti(IV), Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) at pH 9.6 - 10.0 for seawater and pH 10.5 - 11.4 for a table-salt solution. The coprecipitated elements could be determined by inductively coupled plasma atomic emission spectrometry; yttrium was used as an internal standard element. The detection limits ranged from 0.001(6) microg (Mn(II)) to 0.22 microg (Zn(II)) in 100 mL of sample solutions. The operation time required to separate 11 elements was approximately 30 min.  相似文献   

7.
A chelating matrix prepared by immobilizing 1,8-dihydroxyanthraquinone on silica gel modified with 3-aminopropyltriethoxysilane has been characterized by use of cross-polarization magic angle spinning (CPMAS) NMR, diffuse reflectance infrared Fourier transformation (DRIFT) spectroscopy, and thermogravimetric analysis and used to preconcentrate Fe(III), Co(II), Ni(II), and Cu(II) before their determination by flame atomic absorption spectrometry. The optimum pH ranges for quantitative sorption are 6.5-8.0, 6.0-7.0, 6.0-8.0, and 7.0-8.5 for Cu, Fe, Co, and Ni, respectively. All the metal ions can be desorbed with 2 mol L(-1) HCl or HNO3. The sorption capacity ( micromol g(-1) matrix) and preconcentration factor were 226.6, 250; 365.6, 300; 101.8, 150; and 109.0, 250 for Cu, Fe, Co, and Ni, respectively. The lowest concentration for quantitative recovery was 4.0, 3.3, 6.6, and 4.0 ng mL(-1), respectively for the four metal ions. The limits up to which electrolytes NaNO3, NaCl, NaBr, Na2SO4, and Na3PO4 and cations Ca(II) and Mg(II) can coexist with the four metal ions during their sorption without adverse effect are reported. The simultaneous enrichment and determination of all the four metals is possible if the total load of metal ions is less than the sorption capacity. Flame AAS was used to determine the metal ions in underground, tap, and river water samples (RSD相似文献   

8.
A simple and rapid method using an octadecyl-bonded silica membrane disk impregnated with Cyanex302 is described for the pre-concentration and determination of iron. The influence of various parameters on sorption and elution of Fe(III) were systematically investigated. The sorption of Fe(III) at pH 3.2 was quantitative (99.3 +/- 1.1%). It was completely recovered using 20 mL 5.0 M HCI and determined by flame atomic absorption spectrometry. Breakthrough volume of the modified disk for Fe(III) was >2000 mL, pre-concentration factor was >100, and reusability up to 28 cycles. The LOD and LOQ for Fe(III) were 0.45 microg/L and 1.51 microg/L, respectively, while precision for its determination in terms of RSD was < or =2.1%. This method was applied for Fe(III) determination in milk, fortified flour, cocoa powder, tea, and black pepper. To validate the procedure, EPA Method Standard (QC standard 21) was analyzed for Fe(III).  相似文献   

9.
A novel chemiluminescence (CL) flow system has been developed for the sequential determination of Fe(II) and Fe(III) in water. Fe(II) was detected by its catalytic effect on the CL reaction between luminol immobilized on an anion exchange resin column and dissolved oxygen; Fe(III) was determined by difference measurement after on-line conversion to Fe(II) in a reducing mini-column packed with Cu plated Zn granules. For both ions, the calibration graph was linear in the range 1 × 10–9 to 1 × 10–6 g/mL, and the detection limit was 4 × 10–10 g/mL. A complete analysis could be performed in 1.5 min with a relative standard deviation of less than 5%. The system could be reused for over 200 times and has been applied successfully to the determination of Fe(II) and Fe(III) in natural water samples. Received: 13 March 1997 / Revised: 3 June 1997 / Accepted: 6 June 1997  相似文献   

10.
A solid co-precipitated material obtained from an ion-pair of 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) and tetraphenylborate (TPB), and microcrystals of naphthalene has been tried as an adsorbent for the column preconcentration of copper(I), iron(II), nickel(II) and Zn(II). The retention of the metal ions was found to be maximum and constant in the pH range 3.0-8.0 for Cu, 3.8-7.5 for Fe, 4.5-7.5 for Ni and 8.5-11.0 for Zn. The elements were determined by FAAS after dissolving the metal along with the adsorbent in an organic solvent (10 mL of DMF). The characteristic concentration for 1% absorption was found to be 0.0332, 0.0536, 0.0537 and 0.0142 (aqueous medium 0.0512, 0.0638, 0.1294 and 0.0216) microg mL(-1) for Cu, Fe, Ni and Zn, respectively. The calibration plot was linear in the range 1.5-20.0, 2.0-38.0, 2.5-25.0 and 0.5-15.0 micro g in the final 10 mL of DMF solution for Cu, Fe, Ni and Zn, respectively. Various parameters such as pH, volume of buffer, amount of adsorbent, flow rate, preconcentration factor and effect of diverse salts and cations were studied. The optimised conditions were utilized for the determination of Cu, Fe, Ni and Zn in various water, beverage and human hair samples.  相似文献   

11.
A multi-element preconcentration-separation technique for heavy metal ions in environmental samples has been established. The procedure is based on coprecipitation of gold(III), bismuth(III), cobalt(II), chromium(III), iron(III), manganese(II), nickel(II), lead(II), thorium(IV) and uranium(VI) ions by the aid of Cu(II)-9-phenyl-3-fluorone precipitate. The Cu(II)-9-phenyl-3-fluorone precipitate was dissolved by the addition 1.0 mL of concentrated HNO3 and then the solution was completed to 5 mL with distilled water. Iron, lead, cobalt, chromium, manganese and nickel levels in the final solution were determined by flame atomic absorption spectrometer, while gold, bismuth, uranium and thorium were determined by inductively coupled plasma mass spectrometer. The optimal conditions are pH 7, amounts of 9-phenyl-3-fluorone: 5 mg and amounts of Cu(II): 1 mg. The effects of concomitant ions as matrix were also examined. The preconcentration factor was 30. Gold(III), bismuth(III), chromium(III), iron(III), lead(II) and thorium(IV) were quantitatively recovered from the real samples. The detection limits for the analyte elements based on 3 sigma (n = 15) were in the range of 0.05-12.9 μg L−1. The validation of the presented procedure was checked by the analysis of two certified reference materials (Montana I Soil (NIST-SRM 2710) and Lake Sediment (IAEA-SL-1)). The procedure was successfully applied to some environmental samples including water and sediments.  相似文献   

12.
The H-point standard addition method was applied to kinetic data for simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III). The method is based on the difference in the rate of complex formation between iron in two different oxidation states and methylthymol blue (MTB) at pH 3.5 in mixed cetyltrimethylammonium bromide (CTAB) and Triton X-100 micellar medium. Fe(II) can be determined in the range 0.25-2.5 microg ml(-1) with satisfactory accuracy and precision in the presence of excess Fe(III) and other metal ions that rapidly form complexes with MTB under working condition. The proposed method was successfully applied to the simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III) in spiked real environmental and synthetic samples with complex composition.  相似文献   

13.
A method for speciation, preconcentration and separation of Fe(II) and Fe(III) in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. 4-Acetyl-5-methyl-1-phenyl-1H-pyrazole-3-carboxylic acid (AMPC) was used as a new complexing reagent for Fe(III). The Fe(III)-AMPC complex was extracted into methyl isobutyl ketone (MIBK) phase in the pH range 1.0-2.5, and Fe(II) ion remained in aqueous phase at all pH. The chemical composition of the Fe(III)-AMPC complex was determined by the Job's method. The optimum conditions for quantitative recovery of Fe(III) were determined as pH 1.5, shaking time of 2 min, 1.64 × 10−4 mol L−1 AMPC reagent and 10 mL of MIBK. Furthermore, the influences of diverse metal ions were investigated. The level of Fe(II) was calculated by difference of total iron and Fe(III) concentrations. The detection limit based on the 3σ criterion was found to be 0.24 μg L−1 for Fe(III). The recoveries were higher than 95% and relative standard deviation was less than 2.1% (N = 8). The validation of the procedure was performed by the analysis of two certified standard reference materials. The presented method was applied to the determination of Fe(II) and Fe(III) in tap water, lake water, river water, sea water, fruit juice, cola, and molasses samples with satisfactory results.  相似文献   

14.
Amin AS  Gouda AA 《Talanta》2008,76(5):1241-1245
A new simple, very sensitive, selective and accurate procedure for the determination of trace amounts of iron(II) by solid-phase spectrophotometry (SPS) has been developed. The procedure is based on fixation of iron(II) as 2,3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo)quinoxaline on a styrene-divinylbenzene anion-exchange resin. The absorbance of resin sorbed iron(II) complex is measured directly at 743 and 830nm. Iron(III) was determined by difference measurements after reduction of iron(III) to iron(II) with hydroxylamine hydrochloride. Calibration is linear over the range 1.0-20 microgL(-1) of Fe(II) with relative standard deviation (R.S.D.) of 1.65% (n=10.0). The detection and quantification limits for 100mL sample system are 280 and 950 ngL(-1) using 0.5 g of the exchanger. The molar absorptivity and Sandell sensitivity are also calculated and found to be 2.86 x 10(6)Lmol(-1)cm(-1) and 0.0196 ngcm(-2), respectively. The proposed procedure has been successfully applied to determine iron(II) and iron(III) in tap, mineral and well water samples.  相似文献   

15.
A forced degradation study on glibenclamide was performed under conditions of hydrolysis, oxidation, dry heat, and photolysis and a high-performance column liquid chromatographic-ultraviolet (HPLC-UV) method was developed to study degradation behavior of the drug under the forced conditions. The degradation products formed under different forced conditions were characterized through isolation and subsequent infrared/nuclear magnetic resonance/mass spectral analyses, or through HPLC/mass spectrometric (HPLC/MS) studies. The drug degraded in 0.1 M HCI and water at 85 degrees C to a major degradation product, 5-chloro-2-methoxy-N-2-(4-sulfamoylphenyl)ethyl]benzamide (III), and to a minor product, 1-cyclohexyl-3-[[4-(2-aminoethyl)-phenyl]sulfonyl]urea (IV). Upon prolonged heating in the acid, the minor product IV disappeared, resulting in formation of 5-chloro-2-methoxy-benzoic acid (II) and an unidentified product (I). Heating of the drug in 0.1 M NaOH at 85 degrees C yielded II and IV as the major products and I and III as the minor products. The drug and the degradation products formed under different conditions were optimally resolved on a C18 column using ammonium acetate buffer (0.025 M, pH 3.5)-acetonitrile (45 + 55) mobile phase at a flow rate of 0.6 mL/min, with detection at 230 nm. The method was validated for linearity, precision, accuracy, and specificity. Limit of detection (LOD) and limit of quantitation (LOQ) values were also determined. The method could be successfully applied for simultaneous quantification of glibenclamide and the major product, III. The response of the method was linear in a narrow [0.4-10 micro/mL, correlation coefficient (r2) = 0.9982] and a wide (0.4-500 microg/mL, r2 = 0.9993) concentration range for glibenclamide, and in the concentration range of 0.025-50 microg/mL (r2 = 0.9998) for III. The method proved to be precise and accurate for both glibenclamide and III. It was specific for the drug and also selective for each degradation product, and LOQ values for the drug were 0.1 and 0.4 microg/mL, whereas those for III were 0.010 and 0.025 microg/mL, respectively.  相似文献   

16.
A method for rapid speciation analysis of iron was developed by on-line coupling of short column capillary electrophoresis and inductively coupled plasma mass spectrometry. The collision cell technique was used to eliminate argon-based polyatomic interferences and a Micromist nebulizer was employed to increase the nebulization efficiency. Rapid speciation analysis of Fe(II) and Fe(III) was achieved within 1 min by short column capillary electrophoresis in a 14 cm x 50 microm id capillary at 28 kV voltage with a mixture of 15 mmol/L tris(hydroxymethyl)aminomethane + 1 mmol/L 1,10-phenanthroline + 1 mmol/L EDTA (pH 8.6) as running electrolyte. The precisions (RSD, n = 5) of migration time and peak area for Fe(II) and Fe(III) were in the range of 1.0 - 2.6 and 1.9 - 3.9%, respectively. The limits of detection (3sigma) of Fe(II) and Fe(III) were 10.0 and 8.3 microg/L, respectively.  相似文献   

17.
A method has been developed for the simultaneous determination of traces of Fe(III) and Fe(II) in water by on-line coupling of spectrophotometry with flame atomic absorption spectrometry (FAAS). The method involves cloud-point extraction (CPE) of both species with ammonium pyrrolidinecarbodithioate (APDC) under standard conditions, which facilitates the in situ complexation and extraction of both species. Differentiation of the oxidation states of iron is achieved by using mathematical equations to overcome the interference of Fe(III) in the spectrophotometric determination of Fe(II) when they are both present in the same solution. In this manner the time-consuming and labor-intensive steps of preoxidation of Fe(II) or reduction of Fe(III) are eliminated. By preconcentrating a 10-mL sample solution detection limits as low as 7 microg L(-1), were obtained after a single-step extraction procedure. The relative standard deviation (n=4, 30 microg L(-1)) was 2.6 % and 1.8 % for spectrophotometry and FAAS, respectively. Recoveries in the range of 96-105 % were obtained by analysis of spiked real samples. The method was further verified by analyzing a certified reference material (IMEP-9); for this the recovery was 98.5 %.  相似文献   

18.
The analytical features of the reaction between N-phenylanthranilic acid (PAA) and potassium periodate in acidic medium are explored with the aim of improving the catalytic kinetic determination of iron in water samples. In the presence of Fe(II, III), PAA is oxidized by potassium periodate in a formic acid medium to form a violet-colored compound. The reaction is followed spectrophotometrically by measuring the increase in the absorbance of the oxidation product at 525 nm. The variables that affected the reaction rate were investigated and the reaction conditions were established. Calibration graphs are linear in the range of concentrations 2 - 500 ng mL(-1). As low as 10(-8) mol L(-1) Fe(II, III) can be easily determined by the fixed time method. The established catalytic method was successfully applied to the determination of iron in tap water and in pharmaceutical samples.  相似文献   

19.
A micellar electrokinetic capillary chromatographic (MEKC) procedure has been developed for the separation and determination of dioxouranium (VI), iron(III), copper(II), and nickel(II) using bis(salicylaldehyde)propylenediimine (H2SA2Pn) as chelating reagent with a total run time of <3 min. Sodium dodecyl sulphate (SDS) was used as micellar medium at pH 8.1 with sodium tetraborate buffer (0.1 M). Uncoated fused silica capillary with effective length 38.8 cmx75 microm id was used with an applied voltage of 30 kV and photo-diode array detection at 228 nm. Linear calibrations were established within 0.045-1000 microg/mL of each element with detection limit within 15-122 ng/mL. The method was applied to the analysis of spring water and rock samples. The presence of uranium in rock and spring water samples was established within 1.58-1739.3 microg/g and 0.047-0.712 microg/mL with relative standard deviation within 0.9-2.1% and 1.3-2.6% respectively. Uranium ore and water samples were also assayed by the standard addition technique. Recovery of uranium was >98% with RSD up to 2.7%. Copper, nickel, and iron in their combined matrix were concurrently determined within RSD 0.6-3.6% (n=5) and the results obtained were compared with those of flame AAS.  相似文献   

20.
Electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry (ETV-ICP-ES) has been used for the sequential determination of Cr(III) and Cr(VI). The method is based on the difference between the chelate reactions of the two Cr species and acetylacetone. Cr(III) chelate was separated from Cr(VI) and determined with use of acetylacetone as chemical modifier. The retained Cr(VI) in graphite tube was analyzed subsequently, after addition of polytetrafluoroethylene (PTFE) as chemical modifier. The different factors affecting the vaporization behavior of Cr(III) acetylacetonate were investigated in detail. The detection limits for Cr (III) and Cr(VI) were 0.56 and 1.4 ng mL(-1), respectively, and relative standard deviations for 0.1 microg mL(-1) Cr(III) and 0.1 microg mL(-1) Cr(VI) were 2.5% (n = 6) and 4.8% (n = 6), respectively. The linear ranges of the calibration curve for both Cr(IIl) and Cr(VI) covered three orders of magnitude. The proposed method was used to analyze water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号