首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
An ultra‐high‐performance liquid chromatography–mass spectrometry (UPLC/MS/MS) method was developed and validated for the quantification of trimethylamine‐N‐oxide (TMAO) simultaneously with TMAO‐related molecules l ‐carnitine and γ‐butyrobetaine (GBB) in human blood plasma. The separation of analytes was achieved using a Hydrophilic interaction liquid chromatography (HILIC)‐type column with ammonium acetate–acetonitrile as the mobile phase. TMAO determination was validated according to valid US Food and Drug Administration guidelines. The developed method was successfully applied to plasma samples from healthy volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
An enantioselective synthesis of (+)‐8‐epi ‐xanthatin hinging on a chiral phosphoric acid catalyzed tandem allylboration/lactonization reaction is reported. With (+)‐8‐epi ‐xanthatin as the precursor, the collective synthesis of a series of synthetically challenging xanthanolides was also accomplished. Among them, xanthipungolide, one of the most complex xanthanolide monomers, was accessed through a bioinspired tandem double‐bond isomerization/6π electronic cyclization/intramolecular Diels–Alder reaction, and pungiolides A, B, D, E, and L–N, a group of xanthanolide dimers, were assembled through a bioinspired Diels–Alder dimerization followed by late‐stage diversification.  相似文献   

3.
Oxidosqualene cyclases catalyze the transformation of oxidosqualene ( 1 ) into numerous cyclic triterpenes. Enzymatic reactions of 24‐noroxidosqualene ( 8 ) and 30‐noroxidosqualene ( 9 ) with Euphorbia tirucalli β‐amyrin synthase were conducted to examine the role of the branched methyl groups of compound 1 in the β‐amyrin biosynthesis. Substrate 8 almost exclusively afforded 30‐nor‐β‐amyrin (>95.5 %), which was produced through a normal cyclization pathway, along with minor products (<4.5 %). However, a lack of the Me‐30 group (analogue 9 ) resulted in significantly high production of premature cyclization products, including 6/6/6/5‐fused tetracyclic and 6/6/6/6/5‐fused pentacyclic skeletons (64.6 %). In addition, the fully cyclized product (35.4 %) having the 6/6/6/6/6‐fused pentacycle was produced; however, the normally cyclized product, 29‐nor‐β‐amyrin was present in only 18.6 % of these products. The conversion yield of substrate 8 possessing a Z‐Me group at the terminus was approximately twofold greater than that of compound 9 with an E‐Me group. Thus, the Me‐30 group is essential for the correct folding of a chair–chair–chair–boat–boat conformation of compound 1 for the production of the β‐amyrin scaffold, whereas the Me‐24 group exerts little influence on the normal polycyclization cascade. Here, we show that the Me‐30 group plays critical roles in constructing the ordered architecture of a chair–chair–chair–boat–boat structure, in facilitating the ring‐expansion reactions, and in performing the final deprotonation reaction at the correct position.  相似文献   

4.
We study the structure and photochemistry of the glyoxal–methanol system (G–MeOH) by means of FTIR matrix isolation spectroscopy and ab initio calculations. The FTIR spectra show that the non‐hydrogen‐bonded complex, G–MeOH‐1, is present in an inert environment of solid argon. MP2/aug‐cc‐pVDZ calculations indicate that G–MeOH‐1 is the most stable complex among the five optimized structures. The interaction energy partitioned according to the symmetry‐adapted perturbation theory (SAPT) scheme demonstrates that the dispersion energy gives a larger contribution to the stabilization of a non‐hydrogen‐bonded G–MeOH‐1 complex than compared to the hydrogen‐bonded ones. The irradiation of G–MeOH‐1 with the filtered output of a mercury lamp (λ>370 nm) leads to its photo‐conversion into the hydroxyketene–methanol complex HK–MeOH‐1. The identity of HK–MeOH‐1 is confirmed by both FTIR spectroscopy and MP2/aug‐cc‐pVDZ calculations. An experiment with deuterated methanol (CH3OD) evidences that hydroxyketene is formed in a photo‐induced hydrogen exchange reaction between glyoxal and methanol. The pathway for the photo‐conversion of G–MeOH‐1 to HK–MeOH‐1 is studied by a coupled‐cluster method [CR–CC(2,3)]. The calculations confirm our experimental findings that the reaction proceeds via hydrogen atom exchange between the OH group of methanol and CH group of glyoxal.  相似文献   

5.
The use of m‐ethynylphenol (m‐EP) and pt‐butylphenol (PTBP) as coterminators for bisphenol A polycarbonates (BA PCs) provided long‐chain‐branched PCs, partially crosslinked PCs, or both after the thermal reaction of the terminal m‐EP groups, depending on the molar ratio of the chain terminators. Linear m‐EP/PTBP PCs were prepared by solution phosgenation of BA and the two coterminators. Differential scanning calorimetry showed the onset of the m‐EP‐end‐group reaction at about 250 °C by the appearance of a reaction exotherm. The enthalpy (ΔH) of this reaction was roughly proportional to the amount of m‐EP in the PC and to an extent could be used to monitor the progress of the reaction and estimate its kinetics. A complete m‐EP‐end‐group reaction was evident from gel permeation chromatography analysis upon heating under N2 to 380 °C for 10 min or 360 °C for 60 min. The amount, if any, of gel formed after the m‐EP‐end‐group reaction depended on XEP; those PCs with a XEP value less than or equal to 0.33 had little or no gel. The maximum XEP that precluded the formation of gels after branching was estimated to be about 0.45–0.48. The molecular weight of m‐EP/PTBP PCs increased after branching, as evidenced by gel permeation chromatography analysis. Assuming that the terminal m‐EP groups had a statistical distribution on the polymer chain ends and that they underwent only homopolymerization, the average reacted m‐EP‐group functionality according to estimated gel‐point composition was about 2.8–3.0. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2352–2358, 2000  相似文献   

6.
Recently, acid–base bifunctional catalysts have been considered due to their abilities, such as the simultaneous activation of electrophilic and nucleophilic species and their high importance in organic syntheses. However, the synthesis of acid–base catalysts is problematic due to the neutralization of acidic and basic groups. This work reports a facial approach to solve this problem via the synthesis of a novel bifunctional polymer using inexpensive materials and easy methods. In this way, at the first step, heterogeneous poly (styrene sulfonic acid‐n‐vinylimidazole) containing pentaerythritol tetra‐(3‐mercaptopropionate) (PETMP) and trimethylolpropane trimethacrylate (TMPTMA) cross‐linkers were synthesized in the pores of a mesoporous silica structure using click reaction as a novel bifunctional acid–base catalyst. After that, Ni‐Pd nanoparticles supported on poly (styrenesulfonic acid‐n‐vinylimidazole)/KIT‐6 as a novel trifunctional heterogeneous acid–base‐metal catalyst was prepared. The prepared catalysts were characterized by various techniques like FT‐IR, TGA, ICP‐AES, DRS‐UV, TEM, FE‐SEM, EDS‐Mapping, and XRD. The synthesized catalysts were efficiently used as bifunctional/trifunctional catalysts for one‐pot, deacetalization‐Knoevenagel condensation and one‐pot, three‐step and a sequential reaction containing deacetalization‐Knoevenagel condensation‐reduction reaction. It is important to note that the synthesized catalyst showing high chemo‐selectivity for the reduction of nitro group, alkenyl double bond and ester group in the presence of nitrile. Moreover, it was found that the different nanoparticles including Ni, Pd, and alloyed Ni‐Pd showing different chemo‐selectivity and catalytic activity in the reaction.  相似文献   

7.
The first examples of 3,3‐diaryloxetanes are prepared in a lithium‐catalyzed and substrate dependent divergent Friedel–Crafts reaction. para‐Selective Friedel–Crafts reactions of phenols using oxetan‐3‐ols afford 3,3‐diaryloxetanes by displacement of the hydroxy group. These constitute new isosteres for benzophenones and diarylmethanes. Conversely, ortho‐selective Friedel–Crafts reactions of phenols afford 3‐aryl‐3‐hydroxymethyl‐dihydrobenzofurans by tandem alkylation–ring‐opening reactions; the outcome of the reaction diverging to structurally distinct products dependent on the substrate regioselectivity. Further reactivity of the oxetane products is demonstrated, suitable for incorporation into drug discovery efforts.  相似文献   

8.
A transition-metal free, one-pot tandem synthetic routes for novel indole and imidazo[1,2-a]pyridine derivative hybrids have been established. An efficient three-component reaction was designed with incorporation of two sequential Groebke–Blackburn–Bienayme (GBB) and cyclization reaction in one-pot under mild acidic condition. The salient feature of this protocol is atom economy, good yield and operational simplicity. A molecular prospective library of 32 compounds was synthesized by utilizing the various substituted aryl aldehydes and 2-aminopyridine.  相似文献   

9.
A new, convenient and efficient AgNO3‐catalyzed strategy for the preparation of 2‐(benzo[d]azol‐2‐yl)phenol derivatives in good to excellent yields (63–98%) is described. The reaction proceeds via condensation/intramolecular nucleophilic addition/oxidation process between substituted salicylaldehydes and 2‐aminothiophenol, 2‐aminophenol or benzene‐1,2‐diamine under mild reaction conditions. Notably, this reaction utilizes cheap AgNO3 as a readily available and low‐cost benign oxidant at low catalyst loadings with excellent functional group tolerance.  相似文献   

10.
The unexpected 1,3‐benzodithiine derivatives 5b,c were obtained from the reactions of trimethylsilyldiazomethane 2 with C‐sulfonyldithioformates, bearing pentachlorophenylthio group, 1b,c via unprecedented cyclization of the transient thiocarbonyl ylides 4b,c . While the corresponding reaction with C‐sulfonyldithioformates, bearing phenylthio group, afforded 5a via [2 + 3]‐cycloadditive dimerization of a transient thiocarbonyl ylides 4a . Under the same reaction condition, C‐sulfonyldithioformates 1d–f react with diazomethane and/or phenyldiazomethane to afford the unsymmetrical 1,3‐dithiolane 7d,e and thiirane 8e,f derivatives, respectively. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:28–33, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20246  相似文献   

11.
The efficient asymmetric total synthesis of (?)‐oseltamivir, an antiviral reagent, has been accomplished by using two “one‐pot” reaction sequences, with excellent overall yield (60 %) and only one required purification by column chromatography. The first one‐pot reaction sequence consists of a diphenylprolinol silyl ether mediated asymmetric Michael reaction, a domino Michael reaction/Horner–Wadsworth–Emmons reaction combined with retro‐aldol/Horner–Wadsworth–Emmons reaction and retro Michael reactions, a thiol Michael reaction, and a base‐catalyzed isomerization. Six reactions can be successfully conducted in the second one‐pot reaction sequence; these are deprotection of a tert‐butyl ester and its conversion into an acyl chloride then an acyl azide, Curtius rearrangement, amide formation, reduction of a nitro group into an amine, and a retro Michael reaction of a thiol moiety. A column‐free synthesis of (?)‐oseltamivir has also been established.  相似文献   

12.
In this article, N‐(2‐aminophenyl)arylsulfonamides (1–5) were successfully synthesized by the reaction of o‐phenylenediamine and various benzenesulfonyl chlorides. The Schiff base derivatives (1a–f; 4e) of those compounds were obtained using different aldehydes. Then, a series of neutral‐four coordinate Pd(II) complexes (6–10) were prepared from the reaction of Pd(OAc)2 and 1–5. On the other hand, when we tried to synthesize Pd(II) complexes containing Schiff base/sulfonamide ligands, two different situations were observed. Generally, when an electron‐donating group was attached to the imine fragment (1a–d) except for 1f, the Schiff base hydrolyzed and 6 was isolated. When an electron‐withdrawing group was attached to the imine fragment (1e, 4e), neutral four‐coordinate Pd(II) complexes (11–13) bearing Schiff base/sulfonamide ligands were isolated. The synthesized compounds were characterized by FT‐IR, elemental analysis and NMR spectroscopy. The complexes were used as a catalyst in the oxidation reaction of benzyl alcohol to benzaldehyde in the presence of H5IO6 in acetonitrile. All complexes showed satisfactory catalytic activity. The highest catalytic activity was obtained with 9. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A microporous polymer is prepared by a catalyst‐free Diels–Alder reaction. A cyclopentadiene with both a diene and a dienophile functionality and a dienophilic maleimide are used for the Diels–Alder reaction. 1,3,5‐Tris(bromomethyl)‐2,4,6‐trimethylbenzene is reacted with sodium cyclopentadienide to produce the multicyclopentadiene‐functionalized monomer. A crosslinked polymer ( CDAP ) is obtained by the reaction of the cyclopentadiene monomer with N,N′‐1,4‐phenylenedimaleimide. The thermal dissociation of the cyclopentadiene dimeric unit and the subsequent Diels–Alder reaction with the maleimide group are investigated by the model reaction. We are able to restructure the crosslinked polymer network by taking advantage of the thermal reversibility of the Diels–Alder linkage. After the post thermal treatment, the BET surface area of the polymer ( CDAP‐T ) is greatly increased from 317 to 1038 m2 g?1. CDAP‐T is functionalized with pyrene by bromination with N‐bromosuccinimide and the subsequent substitution reaction with aminopyrene. The adsorption property of the pyrene‐functionalized polymer for an aromatic dye is investigated using malachite green. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3646–3653  相似文献   

14.
Amphidinolide N, the structure of which has been recently revised, is a 26‐membered macrolide featuring allyl epoxide and tetrahydropyran moieties with 13 chiral centers. Due to its challenging structure and extraordinary potent cytotoxicity, amphidinolide N is a highly attractive target of total synthesis. During our total synthesis studies of the 7,10‐epimer of the proposed structure of amphidinolide N, we have synthesized the C1–C13 subunit enantio‐ and diastereoselectively. Key reactions include an l ‐proline catalyzed enantioselective intramolecular aldol reaction, Evans aldol reaction, Sharpless asymmetric epoxidation and Tamao–Fleming oxidation. To aid late‐stage manipulations, we also developed the 4‐(N‐benzyloxycarbonyl‐N‐methylamino)butyryl group as a novel ester protective group for the C9 alcohol.  相似文献   

15.
We have investigated the requirements for efficient Pd‐catalyzed Suzuki–Miyaura catalyst‐transfer condensation polymerization (Pd‐CTCP) reactions of 2‐alkoxypropyl‐6‐(5‐bromothiophen‐2‐yl)‐3‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)pyridine ( 12 ) as a donor–acceptor (D –A) biaryl monomer. As model reactions, we first carried out the Suzuki–Miyaura coupling reaction of X–Py–Th–X′ (Th=thiophene, Py=pyridine, X, X′=Br or I) 1 with phenylboronic acid ester 2 by using tBu3PPd0 as the catalyst. Monosubstitution with a phenyl group at Th‐I mainly took place in the reaction of Br–Py–Th–I ( 1 b ) with 2 , whereas disubstitution selectively occurred in the reaction of I–Py–Th–Br ( 1 c ) with 2 , indicating that the Pd catalyst is intramolecularly transferred from acceptor Py to donor Th. Therefore, we synthesized monomer 12 by introduction of a boronate moiety and bromine into Py and Th, respectively. However, examination of the relationship between monomer conversion and the Mn of the obtained polymer, as well as the matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra, indicated that Suzuki–Miyaura coupling polymerization of 12 with (o‐tolyl)tBu3PPdBr initiator 13 proceeded in a step‐growth polymerization manner through intermolecular transfer of the Pd catalyst. To understand the discrepancy between the model reactions and polymerization reaction, Suzuki–Miyaura coupling reactions of 1 c with thiopheneboronic acid ester instead of 2 were carried out. This resulted in a decrease of the disubstitution product. Therefore, step‐growth polymerization appears to be due to intermolecular transfer of the Pd catalyst from Th after reductive elimination of the Th‐Pd‐Py complex formed by transmetalation of polymer Th–Br with (Pin)B–Py–Th–Br monomer 12 (Pin=pinacol). Catalysts with similar stabilization energies of metal–arene η2‐coordination for D and A monomers may be needed for CTCP reactions of biaryl D–A monomers.  相似文献   

16.
Boron arylations of B‐(methoxo)triphenylsubporphyrin have been developed with a combined use of ArZnI?LiCl and trimethylsilyl chloride. Aryl zinc reagents bearing bromo, cyano, amide, and ester groups can be employed for the B‐arylation reaction to provide the corresponding B‐arylated subporphyrins in moderate yields. Postmodifications of B‐arylated subporphyrins have been demonstrated without loss of the B?C bond. These modifications include conversion of the cyano group into a benzoyl group with PhMgBr, hydrolysis of the ester group to give B‐(4‐carboxyphenyl)subporphyrin, and Pd‐catalyzed Suzuki–Miyaura coupling of the 4‐bromophenyl group to give a 1,4‐phenylene‐bridged subporphyrin–ZnII porphyrin hybrid that displays intramolecular excitation energy transfer from the subporphyrin to the porphyrin. The newly synthesized B‐arylated subporphyrins have been fully characterized by NMR, UV/Vis absorption and fluorescence spectroscopies, mass spectrometry, electrochemical measurements, and X‐ray diffraction analysis.  相似文献   

17.
A mild and efficient gold‐catalyzed oxidative ring‐expansion of a series of alkynyl heterocycles using pyridine‐N‐oxide as the oxidant has been developed, which affords highly valuable six‐ or seven‐membered heterocycles with wide functional group toleration. The reaction consists of a regioselective oxidation and a chemoselective migration of an endocyclic carbon–heteroatom bond (favored over C?H migration) with the order of migratory aptitude for carbon–heteroatom bonds being C?S>C?N>C?O. In the absence of an oxidant, polycyclic products are readily constructed through a ring‐expansion/Nazarov cyclization reaction sequence.  相似文献   

18.
The effect of prepolymer molecular weight on the solid‐state polymerization (SSP) of poly(bisphenol A carbonate) was investigated using nitrogen (N2) as a sweep fluid. Prepolymers with different number–average molecular weights, 3800 and 2400 g/mol, were synthesized using melt transesterification. SSP of the two prepolymers then was carried out at reaction temperatures in the range 120–190 °C, with a prepolymer particle size in the range 20–45 μm and a N2 flow rate of 1600 mL/min. The glass transition temperature (Tg), number–average molecular weight (Mn), and percent crystallinity were measured at various times during each SSP. The phenyl‐to‐phenolic end‐group ratio of the prepolymers and the solid‐state synthesized polymers was determined using 125.76 MHz 13C and 500.13 MHz 1H nuclear magnetic resonance (NMR) spectroscopy. At each reaction temperature, SSP of the higher‐molecular‐weight prepolymer (Mn = 3800 g/mol) always resulted in higher‐molecular‐weight polymers, compared with the polymers synthesized using the lower molecular weight prepolymer (Mn = 2400 g/mol). Both the crystallinity and the lamellar thickness of the polymers synthesized from the lower‐molecular‐weight prepolymer were significantly higher than for those synthesized from the higher‐molecular‐weight prepolymer. Higher crystallinity and lamellar thickness may lower the reaction rate by reducing chain‐end mobility, effectively reducing the rate constant for the reaction of end groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4959–4969, 2008  相似文献   

19.
A new enantioselective Heck–Matsuda desymmetrization reaction was accomplished by using 3‐cyclopentenol to produce chiral five‐membered 4‐aryl cyclopentenol scaffolds in good yields and high ee’s, together with some 3‐aryl‐cyclopentanones as minor products. Mechanistically, the hydroxyl group of 3‐cyclopentenol acts as a directing group and is responsible for the cis‐ arrangement in the formation of the 4‐aryl‐cyclopentenols.  相似文献   

20.
Using reactivity of pyrazinamidrazones and their N′‐substituted derivatives 1–8 in reaction with sulfonyl chlorides sulfone derivatives 9–17 were obtained, with orthoformate cyclized to sulfonyl compounds 18–20 . Amidrazones in reaction with pyraziniminoesters gave dihydrazidines 21–23 , which cyclized to 3,5‐dipyrazine derivatives of 1,2,4‐triazole 24–26 . 1‐Methyl‐ or 1‐phenyl‐3‐pyrazine‐1,2,4‐triazole 27–38 was formed in reaction of amidrazones 1–8 with orthoformate and orthoacetate or benzoyl chloride. N′‐Phenylamidrazones 3, 8 in reaction with thionyl chloride were transformed to 1,2,3,5‐thiatriazole S‐oxides 39, 40 . Obtained compounds exhibited low antibacterial activity. Antifungal activity was affirmed for compounds 1, 3, 4, 5, 8, 37, 39, and 40 , for which minimal inhibitory concentration (MIC) was in the concentration range of 16–128 μg/mL. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 23:49–58, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20751  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号