首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geometrically nonlinear dynamics of an axially accelerating beam is investigated numerically in this paper. Employing the Galerkin scheme, the equation of motion is reduced to a set of nonlinear ordinary differential equations with coupled terms. The linear part of this set of equations is then solved to determine the linear natural frequencies. The frequency of the axial acceleration is set to twice the first or second linear natural frequency (subharmonic resonance), and bifurcation diagrams of Poincaré maps are obtained via direct time integration and choosing the amplitude of the speed variations as a bifurcation parameter. The results are presented for four different values of the mean value of the axial speed, specifically in the form of time traces, phase-plane portraits, fast Fourier transforms (FFTs), and Poincaré maps.  相似文献   

2.
The nonlinear coupled longitudinal-transverse vibrations and stability of an axially moving beam, subjected to a distributed harmonic external force, which is supported by an intermediate spring, are investigated. A?case of three-to-one internal resonance as well as that of non-resonance is considered. The equations of motion are obtained via Hamilton??s principle and discretized into a set of coupled nonlinear ordinary differential equations using Galerkin??s method. The resulting equations are solved via two different techniques: the pseudo-arclength continuation method and direct time integration. The frequency-response curves of the system and the bifurcation diagrams of Poincaré maps are analyzed.  相似文献   

3.
The sub- and super-critical dynamics of an axially moving beam subjected to a transverse harmonic excitation force is examined for the cases where the system is tuned to a three-to-one internal resonance as well as for the case where it is not. The governing equation of motion of this gyroscopic system is discretized by employing Galerkin’s technique which yields a set of coupled nonlinear differential equations. For the system in the sub-critical speed regime, the periodic solutions are studied using the pseudo-arclength continuation method, while the global dynamics is investigated numerically. In the latter case, bifurcation diagrams of Poincaré maps are obtained via direct time integration. Moreover, for a selected set of system parameters, the dynamics of the system is presented in the form of time histories, phase-plane portraits, and Poincaré maps. Finally, the effects of different system parameters on the amplitude-frequency responses as well as bifurcation diagrams are presented.  相似文献   

4.
This paper investigates the dynamical behaviour of a fluid-conveying curved pipe subjected to motion-limiting constraints and a harmonic excitation. Based on a Newtonian method, the in-plane equation of motion of this curved pipe is derived. Then a set of discrete equations in spatial space obtained by the differential quadrature method (DQM) is solved numerically. Emphasis is placed on the possible dynamical behaviour of the curved pipe conveying fluid. The numerical results show that the pipe without motion-limiting constraints but with a harmonic force behaves as an ordinary linear system. If, however, the pipe is subjected to cubic motion-limiting constraints, nonlinear dynamic phenomena of the system will occur. Calculations of bifurcation diagrams, phase-plane portraits, time responses, power spectrum diagrams, and Poincaré maps of the oscillations clearly demonstrate the existence of chaotic and quasiperiodic motions. Moreover, it is shown that the route to chaos is via a sequence of period-doubling bifurcations.  相似文献   

5.
The thermo-mechanical nonlinear dynamics of a buckled axially moving beam is numerically investigated, with special consideration to the case with a three-to-one internal resonance between the first two modes. The equation of motion of the system traveling at a constant axial speed is obtained using Hamilton??s principle. A closed form solution is developed for the post-buckling configuration for the system with an axial speed beyond the first instability. The equation of motion over the buckled state is obtained for the forced system. The equation is reduced into a set of nonlinear ordinary differential equations via the Galerkin method. This set is solved using the pseudo-arclength continuation technique to examine the frequency response curves and direct-time integration to construct bifurcation diagrams of Poincaré maps. The vibration characteristics of the system at points of interest in the parameter space are presented in the form of time histories, phase-plane portraits, and Poincaré sections.  相似文献   

6.
This paper investigates the nonlinear forced dynamics of an axially moving Timoshenko beam. Taking into account rotary inertia and shear deformation, the equations of motion are obtained through use of constitutive relations and Hamilton’s principle. The two coupled nonlinear partial differential equations are discretized into a set of nonlinear ordinary differential equations via Galerkin’s scheme. The set is solved by means of the pseudo-arclength continuation technique and direct time integration. Specifically, the frequency-response curves of the system in the subcritical regime are obtained via the pseudo-arclength continuation technique; the bifurcation diagrams of Poincaré maps are obtained by means of direct time integration of the discretized equations. The resonant response is examined, for the cases when the system possesses a three-to-one internal resonance and when not. Results are shown through time traces, phase-plane portraits, and fast Fourier transforms (FFTs). The results indicate that the system displays a wide variety of rich dynamics.  相似文献   

7.
The three-dimensional nonlinear planar dynamics of an axially moving Timoshenko beam is investigated in this paper by means of two numerical techniques. The equations of motion for the longitudinal, transverse, and rotational motions are derived using constitutive relations and via Hamilton’s principle. The Galerkin method is employed to discretize the three partial differential equations of motion, yielding a set of nonlinear ordinary differential equations with coupled terms. This set is solved using the pseudo-arclength continuation technique so as to plot frequency-response curves of the system for different cases. Bifurcation diagrams of Poincaré maps for the system near the first instability are obtained via direct time integration of the discretized equations. Time histories, phase-plane portraits, and fast Fourier transforms are presented for some system parameters.  相似文献   

8.
An investigation is carried out on the systematic analysis of the dynamic behavior of the hybrid squeeze-film damper (HSFD) mounted a gear-bearing system with strongly non-linear oil-film force and gear meshing force in the present study. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless unbalance coefficient, damping coefficient and the dimensionless rotating speed ratio as control parameters. The non-dimensional equations of the gear-bearing system are solved using the fourth order Runge-Kutta method. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, bifurcation diagrams, maximum Lyapunov exponents and fractal dimension of the gear-bearing system. The results presented in this study provide some useful insights into the design and development of a gear-bearing system for rotating machinery that operates in highly rotating speed and highly non-linear regimes.  相似文献   

9.
This paper investigates the steady-state periodic response and the chaos and bifurcation of an axially accelerating viscoelastic Timoshenko beam. For the first time, the nonlinear dynamic behaviors in the transverse parametric vibration of an axially moving Timoshenko beam are studied. The axial speed of the system is assumed as a harmonic variation over a constant mean speed. The transverse motion of the beam is governed by nonlinear integro-partial-differential equations, including the finite axial support rigidity and the longitudinally varying tension due to the axial acceleration. The Galerkin truncation is applied to discretize the governing equations into a set of nonlinear ordinary differential equations. Based on the solutions obtained by the fourth-order Runge–Kutta algorithm, the stable steady-state periodic response is examined. Besides, the bifurcation diagrams of different bifurcation parameters are presented in the subcritical and supercritical regime. Furthermore, the nonlinear dynamical behaviors are identified in the forms of time histories, phase portraits, Poincaré maps, amplitude spectra, and sensitivity to initial conditions. Moreover, numerical examples reveal the effects of various terms Galerkin truncation on the amplitude–frequency responses, as well as bifurcation diagrams.  相似文献   

10.
Based on the potential theory of incompressible flow and the energy method, a two-dimensional simply supported thin panel subjected to external forcing and uniform incompressible subsonic flow is theoretically modeled. The nonlinear cubic stiffness and viscous damper in the middle of the panel is considered. Transformation of the governing partial differential equation to a set of ordinary differential equations is performed through the Galerkin method. The stability of the fixed points of the panel system is analyzed. The regions of different motion types of the panel system are investigated in different parameter spaces. The rich dynamic behaviors are presented as bifurcation diagrams, phase-plane portraits, Poincaré maps and maximum Lyapunov exponents based on carefully numerical simulations.  相似文献   

11.
The nonlinear global forced dynamics of an axially moving viscoelastic beam, while both longitudinal and transverse displacements are taken into account, is examined employing a numerical technique. The equations of motion are derived using Newton′s second law of motion, resulting in two partial differential equations for the longitudinal and transverse motions. A two-parameter rheological Kelvin–Voigt energy dissipation mechanism is employed for the viscoelastic structural model, in which the material, not partial, time derivative is used in the viscoelastic constitutive relations; this gives additional terms due to the simultaneous presence of the material damping and the axial speed. The equations of motion for both longitudinal and transverse motions are then discretized via Galerkin’s method, in which the eigenfunctions for the transverse motion of a hinged-hinged linear stationary beam are chosen as the basis functions. The subsequent set of nonlinear ordinary equations is solved numerically by means of the direct time integration via modified Rosenbrock method, resulting in the bifurcation diagrams of Poincaré maps. The results are also presented in the form of time histories, phase-plane portraits, and fast Fourier transform (FFTs) for specific sets of parameters.  相似文献   

12.
The forced non-linear vibrations of an axially moving beam fitted with an intra-span spring-support are investigated numerically in this paper. The equation of motion is obtained via Hamilton??s principle and constitutive relations. This equation is then discretized via the Galerkin method using the eigenfunctions of a hinged-hinged beam as appropriate basis functions. The resultant non-linear ordinary differential equations are then solved via either the pseudo-arclength continuation technique or direct time integration. The sub-critical response is examined when the excitation frequency is set near the first natural frequency for both the systems with and without internal resonances. Bifurcation diagrams of Poincaré maps obtained from direct time integration are presented as either the forcing amplitude or the axial speed is varied; as we shall see, a sequence of higher-order bifurcations ensues, involving periodic, quasi-periodic, periodic-doubling, and chaotic motions.  相似文献   

13.
In this paper a harmonically excited linear oscillator with a play is investigated. Direct numerical simulation and numerical continuation techniques were employed to study the system behaviour. To conduct the numerical analysis, the system differential equations were transformed into the autonomous form and were then solved using our newly developed in-house Matlab-based computational suite ABESPOL [1]. The results are presented in form of trajectories and Poincaré maps on the phase plane, bifurcation diagrams and basins of attraction. The bifurcation analysis was supported by a path following method. The influence of each system parameter (except gap) on the system dynamics was studied in detail. The bifurcations known as interior crisis and boundary crisis were observed and discussed in this work. Notably, the parameter regions where various types of grazing induced bifurcations occurred were detected and investigated.  相似文献   

14.
Nonlinear vibrations of FGM rectangular plates in thermal environments   总被引:1,自引:0,他引:1  
Geometrically nonlinear vibrations of FGM rectangular plates in thermal environments are investigated via multi-modal energy approach. Both nonlinear first-order shear deformation theory and von Karman theory are used to model simply supported FGM plates with movable edges. Using Lagrange equations of motion, the energy functional is reduced to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities. A pseudo-arclength continuation and collocation scheme is used and it is revealed that, in order to obtain the accurate natural frequency in thermal environments, an analysis based on the full nonlinear model is unavoidable since the plate loses its original flat configuration due to thermal loads. The effect of temperature variations as well as volume fraction exponent is discussed and it is illustrated that thermally deformed FGM plates have stronger hardening behaviour; on the other hand, the effect of volume fraction exponent is not significant, but modal interactions may rise in thermally deformed FGM plates that could not be seen in their undeformed isotropic counterparts. Moreover, a bifurcation analysis is carried out using Gear’s backward differentiation formula (BDF); bifurcation diagrams of Poincaré maps and maximum Lyapunov exponents are obtained in order to detect and classify bifurcations and complex nonlinear dynamics.  相似文献   

15.
An integrated mathematic model and an efficient algorithm on the dynamical behavior of homogeneous viscoelastic corrugated circular plates with shallow sinusoidal corrugations are suggested. Based on the nonlinear bending theory of thin shallow shells, a set of integro-partial differential equations governing the motion of the plates is established from extended Hamilton’s principle. The material behavior is given in terms of the Boltzmann superposition principle. The variational method is applied following an assumed spatial mode to simplify the governing equations to a nonlinear integro-differential variation of the Duffing equation in the temporal domain, which is further reduced to an autonomic system with four coupled first-order ordinary differential equation by introducing an auxiliary variable. These measurements make the numerical simulation performs easily. The classical tools of nonlinear dynamics, such as Poincaré map, phase portrait, Lyapunov exponent, and bifurcation diagrams, are illustrated. The influences of geometric and physical parameters of the plate on its dynamic characteristics are examined. The present mathematic model can easily be used to the similar problems related to other dynamical system for viscoelastic thin plates and shallow shells.  相似文献   

16.
In this paper the nonlinear dynamics of circular cylindrical shells under axial static (compressive) and periodic resonant loads have been experimentally investigated, the goal is to study the dynamic scenario and to analyze nonlinear regimes. A special test rig has been developed for the experiment in order to apply a static axial load combined with a dynamic axial load. The setup allows for investigating the linear behavior under static preload by means of the usual modal testing techniques; moreover, it allows for analyzing the nonlinear response which occurs when the dynamic axial load is periodic and gives rise to complex resonances. The complex dynamics, arising when a periodic axial load excites the asymmetric (shell like) modes, are analyzed by means of amplitude frequency diagrams, waterfall spectrum diagrams, bifurcation diagrams of Poincaré maps; a deep analysis of time histories, spectra, phase portraits and Poincaré maps completes the study of the complex dynamic scenario.  相似文献   

17.
This work reports a numerical study undertaken to investigate the dynamic response of a rotor supported by two turbulent flow model journal bearings with nonlinear suspension and lubricated with couple stress fluid under quadratic damping. This may be the first time that analysis of rotor-bearing system considered the quadratic damping effect. The dynamic response of the rotor center and bearing center are studied. The analysis methods employed in this study are inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincaré maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The modeling results provide some useful insights into the design and development of rotor-bearing system for rotating machinery that operates at highly rotational speed and highly nonlinear regimes.  相似文献   

18.
The non-linear dynamic behaviors of a rotor-bearing-seal coupled system are investigated by using Muszynska’s non-linear seal fluid dynamic force model and non-linear oil film force, and the result from the numerical analysis is in agreement with the one from the experiment. The bifurcation of the coupled system is analyzed under different operating conditions. It is indicated that the dynamic behavior of the rotor-bearing-seal system depends on the rotation speed, seal clearance and seal pressure of the rotor-bearing-seal system. The system state trajectory, Poincaré maps, frequency spectra and bifurcation diagrams are constructed to analyze the dynamic behavior of the rotor center. Various non-linear phenomena in the coupled system, such as periodic motion and quasi-periodic motion are investigated. The results show that the system has the potential for chaotic motion. The study may contribute to a further understanding of the non-linear dynamics of such a rotor-bearing-seal coupled system.  相似文献   

19.
It has been known for some time that under certain circumstances the axisymmetric solution describing the deformation experienced by a stretched circular thin plate or membrane under sufficiently strong normal pressure does not represent an energy-minimum configuration. By using the method of adjacent equilibrium a set of coordinate-free bifurcation equations is derived here by adopting the Föppl–von Kármán plate theory. A particular class of asymmetric bifurcation solutions is then investigated by reduction to a system of ordinary differential equations with variable coefficients. The localised character of the eigenmodes is confirmed numerically and we also look briefly at the role played by the background tension on this phenomenon.  相似文献   

20.
This article introduces a new chaotic system of 4-D autonomous ordinary differential equations, which has no equilibrium. This system shows a hyper-chaotic attractor. There is no sink in this system as there is no equilibrium. The proposed system is investigated through numerical simulations and analyses including time phase portraits, Lyapunov exponents, and Poincaré maps. There is little difference between this chaotic system and other chaotic systems with one or several equilibria shown by phase portraits, Lyapunov exponents and time series methods, but the Poincaré maps show this system is a chaotic system with more complicated dynamics. Moreover, the circuit realization is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号