首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approximate analytical formula has been derived for the prediction of sound fields in a semi-infinite rigid-porous ground due to an airborne source. The method starts by expressing the sound fields in an integral form, which can subsequently be evaluated by the method of steepest descents. The concept of effective impedance has been introduced by using a physically plausible assumption. The integral can then be simplified and evaluated analytically. The analytical solution can be expressed in a closed form analogous to the classical Weyl-Van der Pol formula that has been used for predicting sound fields above a rigid-porous ground. Extensive comparisons with the wave-based numerical solutions according to the fast field formulation and the direct evaluation of the integral have been conducted. It has been demonstrated that the analytical formula is sufficiently accurate to predict the penetration of sound into a wide range of outdoor ground surfaces.  相似文献   

2.
An efficient computation of sound fields due to a monopole source placed above a porous layer is presented. This paper examines an improved scheme whereby the steepest descent path is selected for the numerical evaluation of the Sommerfeld integral. Along the steepest descent path, a standard Gaussian-Hermite quadrature can be used to calculate the sound fields effectively. The suggested numerical scheme is accurate at all frequencies except in the very near field. The proposed method is more numerically efficient than other computational schemes, especially at long ranges and high source frequencies.  相似文献   

3.
We investigated the diffraction of an electromagnetic plane wave by an infinite slit embedded in a homogeneous bi-isotropic medium. With the aim of deriving explicit expressions for the left- and right-handed Beltrami fields, we used the Fourier integral transform, the Wiener–Hopf technique and the steepest descent asymptotic method. The electric and magnetic fields, E and H, were determined from the Beltrami fields. Our graphical results indicate that the strength of both electric and magnetic fields reduces with the dissipation of bi-isotropic medium. While matching the diffraction pattern with the existing plane wave solution, the objective was, and is, to see how well spherical wave solution performs when it is developed for plane wave solution.  相似文献   

4.
We obtain an asymptotic solution to the vertical branch-cut integral of shear waves excited by an impulsive pressure point source in a fluid-filled borehole, by taking the effect of the infinite singularity of the Hankel functions related to shear waves in the integrand at the shear branch point into account and using the method of steepest-descent to expand the vertical branch-cut integral of shear waves. It is theoretically proven that the saddle point of the integrand is located at ks-i/z, where ks and z are the shear branch point and the offset. The continuous and smooth amplitude spectra and the resonant peaks of shear waves are numerically calculated from the asymptotic solution. These asymptotic results are generally in agreement with the numerical integral results. It is also found by the comparison and analysis of two results that the resonant factor and the effect of the normal and leaking mode poles around the shear branch point lead to the two-peak characteristics of the amplitude spectra of shear waves in the resonant peak zones from the numerical integral calculations.  相似文献   

5.
6.
从简谐光波满足的亥姆霍兹方程出发,将由格林定理得到的介质分界面上的积分方程转化为以表面上的光波及其导数为未知量的线性方程组,并对其进行数值求解,实现了光场的数值计算. 同时,由透射光场的格林函数积分得出了基尔霍夫近似下光场的表达式. 通过类比推导夫琅和费面上散斑场自相关函数的方法,提出了产生随机表面及其导数的傅里叶变换方法. 在此基础上,对采用基尔霍夫近似进行自仿射分形随机表面的散射光场数值计算的精确程度进行了研究. 发现在随机表面粗糙度比较小时,基尔霍夫近似的精度比较高;在粗糙度相同的情况下,表面的分形 关键词: 格林函数积分 基尔霍夫近似 自仿射分形随机表面  相似文献   

7.
The physical optics current is obtained from the exact solution of the scattering problem of plane waves by a resistive surface. The edge point method is used for the determination of the physical optics surface current. The derived physical optics integral by considering the new surface current enables one to evaluate the scattering problems by various resistive surfaces with edge discontinuities. The method is applied to the diffraction problem of plane waves by a concave cylindrical reflector. The scattered fields are examined numerically.  相似文献   

8.
Focusing of electromagnetic waves into a uniaxial crystal   总被引:1,自引:0,他引:1  
We derive integral representations suitable for studying the focusing of electromagnetic waves through a plane interface into a uniaxial crystal. To that end we start from existing exact solutions for the transmitted fields due to an arbitrary three-dimensional (3D) wave that is incident upon a plane interface separating two uniaxial crystals with arbitrary orientation of the optical axis in each medium. Then we specialize to the case in which the medium of the incident wave is isotropic and derive explicit expressions for the dyadic Green's functions associated with the transmitted fields as well as integral representations suitable for asymptotic analysis and efficient numerical evaluation. Relevant integral representations for focused 3D electromagnetic waves are also given. Next we consider the special case in which (i) the incident field is a two-dimensional (2D) TM wave and (ii) the optical axis in the crystal lies in the plane of incidence, implying that we have a 2D vectorial problem, and derive dyadic Green's functions, integral representations suitable for asymptotic and numerical treatment, and integral representations for focused TM fields. Numerical results for focused 2D TM fields based on these integral representations as well as corresponding experimental results will be presented in forthcoming papers.  相似文献   

9.
A boundary integral equation method is used to compute the sound pressure emitted by a harmonic source above an inhomogeneous plane. First, the theoretical aspects of the problem (behaviour of the pressure around the discontinuities,…) are studied. Then, a comparison between theoretical levels and experimental levels obtained in an anechoic room is presented. It shows that the boundary integral equation (BIE) method is quite convenient for solving this kind of problem. Two interesting results are pointed out: (i) if only a prediction of maximum sound levels is needed, the attenuation is the same for a cylindrical source, a spherical source and N spherical sources, and so it is possible to transform some three-dimensional problems into two-dimensional ones; (ii) a numerical method of computation of the sound field above an inhomogeneous plane does not provide a correct prediction if each part of the plane is not accurately described by the boundary condition chosen.  相似文献   

10.
The current study simultaneously addresses the problem of reflection and refraction of sound from a rigid porous ground surface. A more rigorous approach is used to derive more accurate asymptotic solutions that can be cast in a convenient form for ease of numerical implementations. The solutions provide means for rapid computations of the sound fields above and below the rigid porous ground. The improved asymptotic formulas for both situations agree well with numerical results obtained by other numerical schemes, which are more accurate but computationally more intensive. More importantly, the asymptotic solutions can be written in the well-known form of the Weyl-van der Pol formula, which provides a direct correlation between the reflected wave term for the sound field above the porous ground and the transmitted (refracted) wave term for the sound field below.  相似文献   

11.
The sound field caused by a monopole source above an impedance plane can be calculated by using a superposition of equivalent point sources located along a line in the mirror space below the plane. Originally, such an approach for representing the half-space Green's function was described by Sommerfeld at the beginning of the last century, in order to treat half-space problems of heat conduction. However, the representation converges only for masslike impedances and cannot be used for the more important case of reflecting planes with springlike surface impedances. The singular part of the line integral can be transformed into a Hankel function, which shows that surface waves are contained in the whole solution. Unfortunately, this representation suffers from the lack of validity at certain receiver points and from restrictions on wave number and impedance range to ensure the necessary convergence. The main idea of the present method is to use also a superposition of equivalent point sources, but to allow that these sources can be located at complex source points. The corresponding form of the half-space Green's function is suitable for both masslike and springlike surface impedances, and can be used as a cornerstone for a boundary element method.  相似文献   

12.
New representations and efficient calculation methods are derived for the problem of propagation from an infinite regularly spaced array of coherent line sources above a homogeneous impedance plane, and for the Green's function for sound propagation in the canyon formed by two infinitely high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral. A pole subtraction technique is used to remove poles in the integrand which lie near the path of integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific numerical integration method is proposed. Numerical experiments show highly accurate results across the frequency spectrum for a range of ground surface types. It is expected that the methods proposed will prove useful in boundary element modeling of noise propagation in canyon streets and in ducts, and for problems of scattering by periodic surfaces.  相似文献   

13.
计算线源声参量阵辐射场的新方法   总被引:1,自引:0,他引:1       下载免费PDF全文
钱祖文 《物理学报》1981,30(11):1479-1487
本文提出一种计算惠更斯积分的新方法,并利用它来研究线源声参量阵。首先将点源函数展开为一个算符对平面波函数的运算,经过计算证明,如果将这个算符对参量阵远场解进行运算,得到的结果即为线源参量阵辐射场的解。其次证明,参量阵的夫琅和费远场解及菲涅耳修正解都可由本文导出,并且证明,菲涅耳修正只是对半束宽角以外的场有贡献。本文还计算了截断参量阵的辐射场,结果表明,这种阵的近场指向性随距离的减小而变尖锐。并且可以预料,实际参量阵辐射场的性质取决于下述三个场参量:kRsin2θ,βR和R1 关键词:  相似文献   

14.
Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural wave fields enables the detection of sources and transmission paths in plate-like structures. The measurement of these wave fields can be carried out indirectly by means of near-field acoustic holography, which determines the vibrational wave field from pressure information measured in a plane close to the plate under investigation. The reconstruction of the plate vibration is usually obtained by inverting the forward radiation problem, i.e., by inversion of an integral operator. In this article, it is shown that a pressure measurement taken in the extreme near-field of a vibrating plate can directly be used for the approximate analysis of the dispersive flexural wave field. The inversion step of near-field acoustic holography is not necessarily required if such an approximate solution is sufficient. The proposed method enables fast and simple analysis of dispersion characteristics. Application of dispersion compensation to the measured field allows for visualizations of propagating wavefronts, such that sources and scatterers in the plate can be detected. The capabilities of the described approach are demonstrated on several measurements.  相似文献   

15.
Sound transmission across a nonuniform section in an infinite duct is studied numerically using the finite element method. An impedance matched absorptive portion is added to each end of the computational domain so as to avoid the undesirable higher mode reflection that will otherwise take place there. Results suggest that the sound fields downstream of the nonuniform section inlet are complicated and cannot be easily described by the conventional solution of the wave equation. The distribution of acoustic energy among the various propagating modes well downstream from the outlet of the nonuniform section is also discussed. Results show that the first symmetrical higher mode is important for all cases. The plane wave becomes important at high frequency with high rate of change of the cross-sectional area when the section is a convergent one.  相似文献   

16.
In has been shown that the sound field reflected by the plane boundary of a layered ground can always be described by a specularly reflected wave, and layer potentials. Despite its generality, this representation is not quite suitable for numerical computation. Dealing with a very simple case, Weyl, and later on Ingard and Thomasson, proposed a representation of the solution in which the layer potential terms are replaced by the sum of surface wave and a Laplace type integral. Such an integral is very convenient for numerical purposes. In this paper, it is shown that this kind of representation can be obtained for a very wide class of sound propagation problems above or within layered media: a half-space bounded by a locally reacting surface, a finite layer of porous medium, a porous medium with depth-varying porosity, a thin elastic plate; wave propagation in shallow water with an impedance bottom. Many other applications could be developed.  相似文献   

17.
We consider the solution of high-frequency scattering problems in two dimensions, modeled by an integral equation on the boundary of a smooth scattering object. We devise a numerical method to obtain solutions on only parts of the boundary with little computational effort. The method incorporates asymptotic properties of the solution and can therefore attain particularly good results for high frequencies. We show that the integral equation in this approach reduces to an ordinary differential equation.  相似文献   

18.
The well-known two-dimensional problem of sound scattering by a Rankine vortex at small Mach number M is considered. Despite its long history, the solutions obtained by many authors still are not free from serious objections. The common approach to the problem consists in the transformation of governing equations to the d’Alembert equation with right-hand part. It was recently shown [I.V. Belyaev, V.F. Kopiev, On the problem formulation of sound scattering by cylindrical vortex, Acoustical Physics 54(5) (2008) 603-614] that due to the slow decay of the mean velocity field at infinity the convective equation with nonuniform coefficients instead of the d’Alembert equation should be considered, and the incident wave should be excited by a point source placed at a large but finite distance from the vortex instead of specifying an incident plane wave (which is not a solution of the governing equations).Here we use the new formulation of Belyaev and Kopiev to obtain the correct solution for the problem of non-resonant sound scattering, to second order in Mach number M. The partial harmonic expansion approach and the method of matched asymptotic expansions are employed. The scattered field in the region far outside the vortex is determined as the solution of the convective wave equation, and van Dyke's matching principle is used to match the fields inside and outside the vortical region. Finally, resonant scattering is also considered; an O(M2) result is found that unifies earlier solutions in the literature. These problems are considered for the first time.  相似文献   

19.
The problem of a point-source field in an irregular impedance waveguide is solved. The 3-D inhomogeneity of one of the walls of the waveguide is given by an area-inhomogeneous impedance. To obtain a solution within the framework of the method of integral equations, we develop a procedure for asymptotic transformation of the 2-D equation into an 1-D equation with allowance for the waves reflected from all the inhomogeneity boundaries. The obtained 1-D integral equation for points that belong to both the path line and boundary contour of the inhomogeneity is solved numerically using an original algorithm. The results of model calculations in a near-earth waveguide for the case of ionospheric perturbations that are large on the wavelength scale are given.State University, St. Petersburg. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 38, No. 12, pp. 1312–1322, December, 1995.  相似文献   

20.
Expressions for calculating the directional characteristics of an array of sound receivers positioned in a waveguide with impedance walls are obtained from the solution to the problem on the diffraction of a plane sound wave by the waveguide open end with impedance flanges. The waveguide can be of a finite length, and, in this case, it can be considered as an open cavity in an impedance screen. The solution of the integral equation for the sound pressure distribution over the opening area is reduced to the solution of an infinite system of algebraic equations for the coefficients of the field expansion in normal waveguide waves. Examples of calculated directional characteristics are presented for arrays with receivers positioned at different distances from the opening and for different values of the impedances of the waveguide walls and flanges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号