首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxo(tert-butylimido) or bis(tert-butylimido)osmium(VI) porphyrins Os(Por)(O)(NBut) and Os(Por)(NBut)2, [Por=meso-tetrakis(p-tolyl)porphyrinato (TTP) and meso-tetrakis(4-chlorophe-nyl)porphyrinato (4-Cl-TPP)] were synthesized by air oxidation of bis(tert-butylamme)osmium(II) porphyrins [Os(Por)(H2NBut)2 (Por=TPP, 4-Cl-TPP], depending on whether tert-butylamine is present. The bis(tert-butylamine)ruthenium(II) porphyrins [Ru(Por)(H2NBut)2, Por=TTP, 4-Cl-TPP] can undergo bromine oxidation to give oxo(tert-butylimido)ruthenium(VI) complexes in quantitative yields. All these new complexes were characterized by 1H NMR, UV-Visible and IR spectroscopy. The X-ray crystal structures of Os(TTP)(O)(NBut).EtOH and Os(4-Cl-TPP)(NBut)2 have been determined. Crystal data: for Os(TTP)(O)(NBut).EtOH: monoclinic, space group P21/c, a=1.3546(6) nm, b=2.3180(3) nm, c=1.6817(3) nm, B=90.84(2), V=527.97(1) nm3, Z=4. The Os=O and Os=NBut distances in Os(TTP)(O)(NBut).EtOH are 0.1772(7) nm and 0.1759(9) nm, respectively. The av  相似文献   

2.
Leung SK  Huang JS  Zhu N  Che CM 《Inorganic chemistry》2003,42(22):7266-7272
Reactions of dioxoosmium(VI) porphyrins [Os(VI)(Por)O(2)] with excess 1,1-diphenylhydrazine in tetrahydrofuran at ca. 55 degrees C for 15 min afforded bis(hydrazido(1-))osmium(IV) porphyrins [Os(IV)(Por)(NHNPh(2))(2)] (1a, Por = TPP (meso-tetraphenylporphyrinato dianion); 1b, Por = TTP (meso-tetrakis(p-tolyl)porphyrinato dianion)), hydroxo(amido)osmium(IV) porphyrins [Os(IV)(Por)(NPh(2))(OH)] (2a, Por = TPP; 2b, Por = TTP), and bis(hydrazido(2-))osmium(VI) porphyrin [Os(VI)(Por)(NNPh(2))(2)] (3c, Por = TMP (meso-tetramesitylporphyrinato dianion)). The same reaction under harsher conditions (in refluxing tetrahydrofuran for ca. 1 h) gave a nitridoosmium(VI) porphyrin, [Os(VI)(Por)(N)(OH)] (4b, Por = TTP). Oxidation of 1a,b with bromine in dichloromethane afforded bis(hydrazido(2-)) complexes [Os(VI)(TPP)(NNPh(2))(2)] (3a) and [Os(VI)(TTP)(NNPh(2))(2)] (3b), respectively. All the new osmium porphyrins were identified by (1)H NMR, IR, and UV-vis spectroscopy and mass spectrometry; the structure of 2b was determined by X-ray crystallography (Os-NPh(2) = 1.944(6) A, Os-OH = 1.952(5) A).  相似文献   

3.
Reactions of dioxoruthenium(VI) porphyrins, [Ru(VI)O2(Por)], with p-chloroaniline, trimethylamine, tert-butylamine, p-nitroaniline, and diphenylamine afforded bis(amine)ruthenium(II) porphyrins, [Ru(II)(Por)(L)2] (L-p-ClC6H4NH2, Me3N, Por=TTP, 4-Cl-TPP; L=tBuNH2, Por = TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP) and bis(amido)ruthenium(IV) porphyrins, [Ru(IV)(Por)(X)2] (X=p-NO2C6H4NH, Por=TTP, 4-Cl-TPP; X = Ph2N, Por = 3,4,5-MeO-TPP, 3,5-Cl-TPP), respectively. Oxidative deprotonation of [Ru(II)(Por)(NH2-p-C6H4Cl)2] in chloroform by air generated bis(arylamido)ruthenium(IV) porphyrins, [RuIV(Por)(NH-p-C6H4Cl)2] (Por=TTP. 4-Cl-TPP). Oxidation of [RuII(Por)-(NH2tBu)2] by bromine in dichloromethane in the presence of tert-butylamine and traces of water produced oxo(imido)ruthenium(VI) porphyrins, [RuVI-O(Por)(NtBu)] (Por=TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP). These new classes of ruthenium complexes were characterized by 1H NMR, IR, and UV/visible spectroscopy, mass spectrometry, and elemental analysis. The structure of [Ru(IV)(TTP)(NH-p-C6H4Cl)2 . CH2Cl2 was determined by X-ray crystallography. The Ru-N bond length and the Ru-N-C angle of the Ru-NHAr moiety are 1.956(7) A and 135.8(6) degrees, respectively.  相似文献   

4.
Synthesis of a Titana-Oxacyclohexane Ring by Controlled Ring Opening of Tetrahydrofurane. Crystal Structures of [Ti(CH2)4O{Me2Si(NBut)2}]2, [TiCl{Me2Si(NBut)2}]33-O)(μ3-Cl), and [Li2(THF)3{Me2Si(NBut)2}] [TiCl3(THF)3] reacts with [(ButNLi)2SiMe2]2 in diethyl ether at –35 °C under redox disproportionation and formation of the yellow titana(IV)-oxacyclohexane complex [Ti(CH2)4O{Me2Si(NBut)2}]2. According to the crystal structure analysis the titanium atoms are linked to form centrosymmetric dimers via the oxygen atoms of the Ti(CH2)4O six-membered rings, which are in chair conformation. Along with the nitrogen atoms of the chelating [Me2Si(NBut)2]2– ligands the titanium atoms obtain a distorted trigonal-bipyramidal surrounding. While [TiCl{Me2Si(NBut)2}]33-O)(μ3-Cl) with a cluster-like structure is obtained as a by-product. According to the crystal structure analysis of [Li2(THF)3 · {Me2Si(NBut)2}], which is involved in the synthesis reaction, the two lithium atoms are connected with both the nitrogen atoms of the t-butyl amide groups and bridged via an oxygen atom of one of the THF molecules.  相似文献   

5.
Huang JS  Yu GA  Xie J  Zhu N  Che CM 《Inorganic chemistry》2006,45(15):5724-5726
Treatment of [Ru(II)(Por)(CO)] [Por = porphyrinato(2-)] and O=PCl(2)R [R = Ad (adamantyl), Bu(t), Bu(sec)] or PCl2Mes (Mes = mesityl) with LiAlH4 afforded primary alkyl- and arylphosphine complexes [Ru(II)(Por)(PH2R)2], which have been isolated in pure form and characterized by 1H NMR, 31P NMR, IR, and UV-vis spectroscopy and mass spectrometry. The structures of [Ru(II)(TTP)(PH2Ad)2] and [Ru(II)(F20-TPP)(PH2Mes)2] were determined by X-ray crystallography.  相似文献   

6.
Ruthenium porphyrins [Ru(F(20)-TPP)(CO)] (F(20)-TPP = 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) and [Ru(Por*)(CO)] (Por = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl]porphyrinato dianion) catalyzed intramolecular amidation of sulfamate esters p-X-C(6)H(4)(CH(2))(2)OSO(2)NH(2) (X = Cl, Me, MeO), XC(6)H(4)(CH(2))(3)OSO(2)NH(2) (X = p-F, p-MeO, m-MeO), and Ar(CH(2))(2)OSO(2)NH(2) (Ar = naphthalen-1-yl, naphthalen-2-yl) with PhI(OAc)(2) to afford the corresponding cyclic sulfamidates in up to 89% yield with up to 100% substrate conversion; up to 88% ee was attained in the asymmetric intramolecular amidation catalyzed by [Ru(Por)(CO)]. Reaction of [Ru(F(20)-TPP)(CO)] with PhI[double bond]NSO(2)OCH(2)CCl(3) (prepared by treating the sulfamate ester Cl(3)CCH(2)OSO(2)NH(2) with PhI(OAc)(2)) afforded a bis(imido)ruthenium(VI) porphyrin, [Ru(VI)(F(20)-TPP)(NSO(2)OCH(2)CCl(3))(2)], in 60% yield. A mechanism involving reactive imido ruthenium porphyrin intermediate was proposed for the ruthenium porphyrin-catalyzed intramolecular amidation of sulfamate esters. Complex [Ru(F(20)-TPP)(CO)] is an active catalyst for intramolecular aziridination of unsaturated sulfonamides with PhI(OAc)(2), producing corresponding bicyclic aziridines in up to 87% yield with up to 100% substrate conversion and high turnover (up to 2014).  相似文献   

7.
Huang JS  Leung SK  Zhou ZY  Zhu N  Che CM 《Inorganic chemistry》2005,44(11):3780-3788
Reaction of dioxoruthenium(VI) porphyrins [Ru(VI)(Por)O2] with arylimine HN=CPh2 in dichloromethane afforded bis(methyleneamido)ruthenium(IV) porphyrins [Ru(IV)(Por)(N=CPh2)2] for Por = 4-Cl-TPP and TMP; (methyleneamido)hydroxoruthenium(IV) porphyrins [Ru(IV)(Por)(N=CPh2)(OH)] for Por = TPP and TTP; and bis(arylimine)ruthenium(II) porphyrins [Ru(II)(Por)(HN=CPh2)2] for Por = 3,5-Cl2TPP and 3,5-(CF3)2TPP. In dichloromethane solution exposed to air, complex [Ru(II)(3,5-Cl2TPP)(HN=CPh2)2] underwent oxidative deprotonation to form [Ru(IV)(3,5-Cl2TPP)(N=CPh2)2]. The new ruthenium porphyrins were identified by 1H NMR, UV-vis, IR, and mass spectroscopy, along with elemental analysis. X-ray crystal structure determinations of [Ru(IV)(4-Cl-TPP)(N=CPh2)2], [Ru(IV)(TPP)(N=CPh2)(OH)], and [Ru(II)(3,5-(CF3)2TPP)(HN=CPh2)2] revealed the Ru-N(methyleneamido) or Ru-N(arylimine) distances of 1.897(5) A (average), 1.808(4) A, and 2.044(2) A (average), respectively.  相似文献   

8.
A series of Al(III) and Sn(II) diiminophosphinate complexes have been synthesized. Reaction of Ph(ArCH2)P(?NBut)NHBut (Ar = Ph, 3 ; Ar = 8‐quinolyl, 4 ) with AlR3 (R = Me, Et) gave aluminum complexes [R2Al{(NBut)2P(Ph)(CH2Ar)}] (R = Me, Ar = Ph, 5 ; R = Me, Ar = 8‐quinolyl, 6 ; R = Et, Ar = Ph, 7 ; R = Et, Ar = quinolyl, 8 ). Lithiated 3 and 4 were treated with SnCl2 to afford tin(II) complexes [ClSn{(NBut)2P(Ph)(CH2Ar)}] (Ar = Ph, 9 ; Ar = 8‐quinolyl, 10 ). Complex 9 was converted to [(Me3Si)2NSn{(NBut)2P(Ph)(CH2Ph)}] ( 11 ) by treatment with LiN(SiMe3)2. Complex 11 was also obtained by reaction of 3 with [Sn{N(SiMe3)2}2]. Complex 9 reacted with [LiOC6H4But‐4] to yield [4‐ButC6H4OSn{(NBut)2P(Ph)(CH2Ph)}] ( 12 ). Compounds 3–12 were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 6 , 10 , and 11 were further characterized by single crystal X‐ray diffraction techniques. The catalytic activity of complexes 5–8 , 11 , and 12 toward the ring‐opening polymerization of ε‐caprolactone (CL) was studied. In the presence of BzOH, the complexes catalyzed the ring‐opening polymerization of ε‐CL in the activity order of 5 > 7 ≈ 8 > 6 ? 11 > 12 , giving polymers with narrow molecular weight distributions. The kinetic studies showed a first‐order dependency on the monomer concentration in each case. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4621–4631, 2006  相似文献   

9.
Molybdenum(VI) bis(imido) complexes [Mo(NtBu)2(LR)2] (R=H 1 a ; R=CF3 1 b ) combined with B(C6F5)3 ( 1 a /B(C6F5)3, 1 b /B(C6F5)3) exhibit a frustrated Lewis pair (FLP) character that can heterolytically split H−H, Si−H and O−H bonds. Cleavage of H2 and Et3SiH affords ion pairs [Mo(NtBu)(NHtBu)(LR)2][HB(C6F5)3] (R=H 2 a ; R=CF3 2 b ) composed of a Mo(VI) amido imido cation and a hydridoborate anion, while reaction with H2O leads to [Mo(NtBu)(NHtBu)(LR)2][(HO)B(C6F5)3] (R=H 3 a ; R=CF3 3 b ). Ion pairs 2 a and 2 b are catalysts for the hydrosilylation of aldehydes with triethylsilane, with 2 b being more active than 2 a . Mechanistic elucidation revealed insertion of the aldehyde into the B−H bond of [HB(C6F5)3]. We were able to isolate and fully characterize, including by single-crystal X-ray diffraction analysis, the inserted products Mo(NtBu)(NHtBu)(LR)2][{PhCH2O}B(C6F5)3] (R=H 4 a ; R=CF3 4 b ). Catalysis occurs at [HB(C6F5)3] while [Mo(NtBu)(NHtBu)(LR)2]+ (R=H or CF3) act as the cationic counterions. However, the striking difference in reactivity gives ample evidence that molybdenum cations behave as weakly coordinating cations (WCC).  相似文献   

10.
Detailed procedures for the syntheses of Os(CO)2(PPh3)3, Os(CO)(CNR)-(PPh3)3 (R = p-tolyl), Os(CO)(CS)(PPh3)3 and Os(CS)(CNR)(PPh3)3, together with the derived complexes Os(CO)2(CS)(PPh3)2, Os(CO)(CS)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CS)(PPh3)2, Os(η2CS2)(CO)2-(PPh3)2, Os(η2CS2)(CO)(CS)(PPh3)2, Os(η2-CS2)(CO)(CNR)(PPh3)2, Os(η2PhC2Ph)(CO)2(PPh3)2 and OsH(C2Ph)(CO)2(PPh3)2 are described.  相似文献   

11.
Os(CS)(PhC?CPh)(PPh3)2 is formed by the treatment of Os(CS)(CO)(PPh3)3 with diphenylacetylene and is an example of a complex containing a four-electron donor acetylene ligand. Os(CS)(PhC?CPh)(PPh3)2 crystallizes in the monoclinic space group P21/n with the cell dimensions a = 9.028(5), b = 25.256(2) and c = 19.22(2) Å with β = 103.8(7)°, V = 4260 Å3, Z = 4 and d(calcd) = 1.461 g cm?3 for mol.wt 937.09 g mol?1. Diffraction data were collected with a Nonius CAD-4 diffractometer and refined to R = 4.05% and Rw = 4.19% for 1172 independent reflections. The structure can be described as a distorted trigonal bipyramid with the CS ligand occupying an axial position. The two cis-PPh3 ligands are in equatorial sites with the acetylene occupying a position between the remaining axial and equatorial sites. The diphenylacetylene is symmetrically bound to the metal with an average Os? C distance of 2.04(3) Å. The Os? CS distance is unusually short at 1.79(2) Å.  相似文献   

12.
Bis(N-ethylideneethanamine)ruthenium(ii) porphyrins, [Ru11(Por)(N(Et)=CHMe)2] (Por=TTP, 4-Cl-TPP), were prepared by the reaction of dioxoruthenium(VI) porphyrins with triethylamine in approximately 85% yields. The reaction between dioxoruthenium(VI) porphyrins and benzophenone imine afforded bis(diphenylmethyleneamido)ruthenium(IV) porphyrins, [Ru(IV)(Por)(N=CPh2)2] (Por=TTP, 3,4,5-MeO-TPP), in approximately 65% yields. These new classes of metalloporphyrins were characterized by 1H NMR, UV/Vis, and IR spectroscopy as well as by mass spectrometry and elemental analysis. The X-ray crystallographic structures of [Ru(II)(TTP)(N(Et)=CHMe)2] and [Ru(IV)(3,4,5-MeO-TPP)(N=CPh2)2] revealed an axial Ru-N bond length of 2.115(6) A for the imine complex and 1.896(8) A for the methyleneamido complex. Each of the N=CPh2 axial groups in [Ru(IV)(3,4,5-MeO-TPP)(N=CPh2)2] adopts a linear coordination mode with a corresponding Ru-N-C angle of 175.9(9)degrees. Spectral and structural studies revealed essentially single bonding character for the bis(imine) complexes but a multiple bonding character for the bis(methyleneamido) complexes with respect to their axial Ru-N bonds.  相似文献   

13.
The vibrational (IR and Raman) spectra of neutral and reduced mixed (phthalocyaninato)(porphyrinato) yttrium(III) double-decker complexes Y(Pc)(Por) and [Y(Pc)(Por)] [the simplified models of mixed (phthalocyaninato)(porphyrinato) rare earth(III) complexes] are studied using density functional theory (DFT) calculations. The simulated IR and Raman spectra of Y(Pc)(Por) are compared with the experimental IR spectrum of Tb(Pc)(TClPP) and Raman spectrum of Y(Pc)(TClPP), respectively, and many bands can acceptably fit in spite of the different species. On the basis of comparison with the simulated spectra of PbPc and PbPor together with the assistance of normal coordinate analysis, the calculated frequencies in their IR and Raman spectra are identified in terms of the vibrational mode of different ligand for the first time. The calculated frequency at 1048 cm−1 in the IR spectrum of [Y(Pc)(Por)] with contribution from both Pc and Por vibrational modes is the characteristic IR vibrational mode of the reduced double-decker, while the characteristic IR vibrational mode of Y(Pc)(Por) attributed from the vibration of phthalocyanine monoanion radical Pc appears at 1257 cm−1. In line with our previous experimental findings that the Raman spectra of M(Pc)(TPP) and M(Pc)(TClPP) are dominated by the Pc vibrational modes, theoretical calculations indicate that most of the Raman vibrational modes contributed from Por ring are covered up by those of Pc ring and thus are hard to be recognized in the Raman spectra of [Y(Pc)(Por)] and Y(Pc)(Por) due to their much weaker intensity in comparison with that of Pc ligand. Comparison in the IR and Raman spectra between [Y(Pc)(Por)] and Y(Pc)(Por) also suggests the localization of hole on the Pc ring in the neutral double-decker Y(Pc)(Por). The present work, representing the first detailed DFT study on the vibrational spectra of mixed (phthalocyaninato)(porphyrinato) rare earth(III) double-decker complexes, is useful in helping to understand the vibrational spectroscopic properties of this series of mixed tetrapyrrole ring complexes.  相似文献   

14.
《Polyhedron》1999,18(20):2575-2578
A synthesis of the title compound by hydrolysis of OsH(C6H5)(CO)(PtBu2Me)2 has the advantage that the product shows 1H NMR spectra free of the influence of hydrogen bonding to water impurity. In the solid state, the hydroxyl group interacts weakly with that of a neighbor. The Os–OH bond is rapidly split by H2, to give H2O and Os(H)2(H2)(CO)(PtBu2Me)2.  相似文献   

15.
The salts, [OsCl(cod)(NH2NR2)3]X (R = H, X = BPh4; R = Me, X = PF6) and [Os(cod)(NH2NH2)4](BPh4)2, formed from [OsCl2(cod)]x and hydrazines, can be converted into a range of hydrazine- and hydrazone-osmium(II) complexes with isocyanides and tertiary phosphorus ligands. The crystal structure of [Os(cod)(CNBut)2(NH2NCMe2)2](BPh4)2·(acetone)2 has been elucidated.  相似文献   

16.
The reaction between AuCl(PPh3 and [Fe(μ3-HCNBut)(CO)9]? gives AuFe33-HCNBut)(CO)9(PPh3), crystals of which are triclinic, space group P1, with a 12.815(3), b 16.265(4), c 19.106(3) Å, α 67.15(3), β 73.46(2), γ 73.12(2)° and Z = 4. The comlex contains an AuFe3 “butterfly” cluster, the Fe3 face of which is bridged by the HCNBut ligand bonded in the (2σ + π) mode on the side opposite to the Au(PPh3) moiety, which, contrary to expectation based on the analogy with H, bridges the two Fe atoms σ-bonded to N, and π-bonded to the CN group. The AuFe2/Fe3 dihedral angles in the two independent molecules differ significantly, with values of 110.9 and 132.1°.  相似文献   

17.
Synthesis and Crystal Structure of Tetraphenylphosphonium Aqua-bis(tetrasulfido)thionitrosyl Osmate, PPh4[Os(NS)(S4)2(H2O)] PPh4[Os(NS)(S4)2(H2O)] has been prepared as redbrown crystals by reacting PPh4[OsNCl4] with a solution of excess disodium tetrasulfide in dimethylformamide/H2O and characterized by IR spectroscopy and by a crystal structure determination. Space group P21/n, Z = 4, structure solution with 4162 independent reflections, R = 0.059 for reflections with I > 2σ(I). Lattice dimensions at ?40°C: a = 1138.9(5), b = 1301.4(4), c = 2092.7(7) pm, β = 104.74(3)º. Os? N, Os? O, and Os? S distances are 175.2(12), 219.8(12), and 237.5(4)?239.1(4) pm, respectively. The Os?N?S moiety is approximately linear, with an OsNS angle of 171.2(7)º.  相似文献   

18.
The reaction of the potassium salt of the N-(thio)phosphorylated thioureas AdNHC(S)NHP(O)(OiPr)2 (HLI , Ad = Adamantyl) and MeNHC(S)NHP(S)(OiPr)2 (HLII ) with Co(II) and Zn(II) in aqueous EtOH leads to [MLI,II 2] chelate complexes. They were investigated by UV-vis, 1H and 31P NMR spectroscopy, and microanalysis. The molecular structures of [MLI 2] were elucidated by single crystal X-ray diffraction analysis. The metal centers in both complexes are found to be in a distorted-tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated LI ligands. The photoluminescence properties of [ZnLII 2] are also reported.  相似文献   

19.
The complexes (OC)4(CNBu t )ReOs(CO)3(CNBu t )Os(CO)3(CNBu t )Re(CNBu t )(CO)4 (A) and (OC)3(CNBu t )2ReOs(CO)4Os(CO)3(CNBu t )Re(CNBu t )(CO)4 (B) have been isolated in low yield from the reaction of Os(CO)3(CNBu t )2 with Re2(-H)(--C2H3)(CO)8 in hexane at room temperature. Both compounds have approximately linear ReOs2Re chains. The Re–Os lengths are in the range 2.9311(7)–2.952(1) Å the Os–Os lengths are 2.875(1) (A) and 2.8759(7) Å (B).  相似文献   

20.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号