首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用X-射线光电子能谱对3种植物基活性炭材料椰壳活性炭(CAC4)、剑麻茎基活性炭(SSAC)和剑麻基活性碳纤维(SACF)的表面化学结构进行了表征,并研究和对比了它们的吸附性能,包括对碘、苯酚和亚甲基蓝的液相吸附性能,对有机蒸汽的吸附性能以及对Au3+的还原吸附性能等.结果表明,3个样品表面均含有多种含氧官能团,吸附能力SACF>SSAC>CAC4.样品的吸附性能主要取决于自身孔结构,与其表面化学结构也有密切的关系.  相似文献   

2.
测定了3种植物基活性炭材料:椰壳活性炭 (CAC4)、剑麻茎基活性炭 (SSAC) 和剑麻基活性碳纤维 (SACF) 的氮吸附等温线,并用不同的理论方法对其孔结构进行了分析和表征。结果表明:CAC4为微孔型,孔径分布集中且大部分是0.7nm以下的极微孔;在相同条件下制备的SSAC和SACF孔分布较为相似,都呈多分散性,结构中除微孔外,还含有丰富的中孔,中孔率均超过50%以上。两者相比,SACF的中孔量和平均孔径更大。3个样品的形态特征和孔结构虽然不同,但其吸附过程都可以用微孔多段填充机理来解析。  相似文献   

3.
测定了3种植物基活性炭材料:椰壳活性炭(CAC4)、剑麻茎基活性炭(SSAC)和剑麻基活性碳纤维(SACF)的氮吸附等温线,并用不同的理论方法对其孔结构进行了分析和表征.结果表明:CAC4为微孔型,孔径分布集中且大部分是0.7nm以下的板微孔:在相同条件下制备的SSAC和SACF孔分布较为相似,都呈多分散性,结构中除微孔外,还含有丰富的中孔,中孔率均超过50%以上.两者相比,SACF的中孔量和平均孔径更大,3个样品的形态特征和孔结构虽然不同,但其吸附过程都可以用微孔多段填充机理来解析。  相似文献   

4.
活性碳纤维的结构修饰及其吸附氙性能的研究   总被引:3,自引:0,他引:3  
活性炭纤维对氙的吸附容量与其孔结构密切相关,为了提高活性炭纤维对氙气的吸附容量,本文分别用亚甲基蓝、对硝基苯酚等有机物,或氯化钠、碘等无机化合物填充的方法修饰活性炭纤维的孔结构;以及利用高锰酸钾或硝酸等氧化处理修饰活性炭纤维的表面化学性质,同时,利用低温氮等温吸附表征了这些改性活性炭纤维的孔结构,以及通过光电子能谱表征了改性活性炭纤维的表面化学结构,上述化合物充填或氧化改性活性炭纤维对氙的吸附性能的研究结果表明,适量化合物填充,或合适浓度硝酸对活性炭纤维的表面处理,可以有效地修饰活性炭纤维的孔结构或改变活性炭纤维表面对氙的亲和力。因而可有效地提高改性活性炭纤维对氙的吸附容量。  相似文献   

5.
以糖厂废弃的糖蜜为原料,Na_2CO_3为活化剂,采用一步直接化学活化法制备了糖蜜基活性炭(AC).采用X射线衍射(XRD)、扫描电子显微镜(SEM)、N_2吸附-脱附及元素分析手段对产物进行了表征,证实其为多孔的石墨化碳材料,比表面积高达1023 m~2/g.研究了糖蜜基活性炭对溶液中的重金属离子Pb(Ⅱ)的脱除性能,结果表明:糖蜜基活性炭的吸附容量高于市售活性炭(CC),且所需吸附时间和投炭量均低于市售活性炭;其吸附动力学符合准二级动力学的Langmuir吸附,为单分子层的化学吸附;吸附Pb(Ⅱ)的糖蜜基活性炭可循环再生和重复使用.  相似文献   

6.
通过对分子筛原粉添加黏结剂,制备出了适宜作为吸附材料的成型分子筛颗粒.随后对成型分子筛颗粒进行活性组分的负载,并采用氮气吸附等温线对不同样品的比表面积和孔径分布进行了分析表征.通过考察样品对氨气的动态吸附能力,对活性组分的种类和含量进行筛选和优化,最终确定以质量分数为8%的H_2SO_4作为分子筛基氨气吸附材料的配比组成.通过与活性炭吸附材料的对比发现,在低湿度和高湿度2种条件下,分子筛基防护材料对NH3的防护性能均优于活性炭.  相似文献   

7.
孔结构对活性炭吸附水溶液中铅离子的影响   总被引:2,自引:0,他引:2  
选取三种表面化学性质相近的活性炭(AC),通过等温吸附实验考察活性炭对水溶液中铅离子的吸附性能,利用扫描电子显微镜(SEM)观察活性炭的表面微观形貌,通过低温(77 K)液氮吸附测定活性炭的比表面积和孔容,并分别以密度泛函理论(DFT)和Barrett-Joyner-Halenda (BJH)法计算微孔和中孔的孔径分布.结果表明:选用的三种活性炭AC1、AC2、AC3在比表面积和总孔容上呈依次下降的趋势,但表面开放孔均匀分布的AC2,具有最高的饱和吸附量,孔结构类似颗粒堆积孔的AC3,具有与表面开放孔分布集中的AC1相近的饱和吸附量;通过对孔结构与吸附量的关联分析可知,在活性炭吸附铅离子的过程中, 0.4-0.6 nm的孔是有效吸附孔, 10.5-20.6 nm、20.6-55.6 nm、5.2-10.5 nm三个区间的孔则会对吸附产生阻碍作用.  相似文献   

8.
以自制的Fe3O4磁性纳米材料为核,多巴胺(DA)为表面修饰剂,成功地将2.0 G聚酰胺-胺(PAMAM)树状大分子接枝在Fe3O4磁核表面,制备出了一系列不同DA含量的Fe3O4@PDA@PAMAM磁性纳米吸附材料。采用X射线衍射仪(XRD)、红外光谱仪(IR)、振动样品磁强计(VSM)、透射电子显微镜(TEM)和电感耦合等离子体发射光谱仪(ICP-OES)等分析测试手段对材料组成、微观结构、磁性能和对重金属Cd(Ⅱ)离子的吸附性能进行了测试和表征。研究了修饰剂DA用量对Fe3O4@PDA@PAMAM磁性纳米吸附材料的相组成、微观结构、磁性能和吸附性能的影响。实验结果表明,Fe3O4@PDA@PAMAM磁性纳米吸附材料均呈典型的核-壳结构,材料晶型均呈现尖晶石结构,且壳层厚度随DA用量增加而增厚;材料的饱和磁化强度(Ms)均比Fe3O4的小,且随着DA用量的增加而降低,并且材料的矫顽力(Hc)和剩余磁化强度(Mr)均较低,其磁响应特性适合于做为可回收磁性纳米吸附材料。材料对Cd(Ⅱ)离子的平衡吸附容量随着DA用量的增加呈先增加后减小趋势。当Fe3O4和DA的质量比为8∶4时,吸附剂对Cd(Ⅱ)离子的吸附容量达到最大值165.13 mg·g^-1。  相似文献   

9.
采用质量分数为3%的Na_2S溶液对活性炭浸渍,在600℃以N_2作为保护气对其进行高温处理,研究Na_2S改性活性炭(SAC)吸附Pb(Ⅱ)的动力学和热力学机理,并对吸附Pb(Ⅱ)前后的改性活性炭进行了表征和分析。结果表明,与改性前活性炭相比,SAC的比表面积和总孔容减小,S元素含量显著提高。SAC对Pb(Ⅱ)的吸附效果显著提高,在Pb(Ⅱ)初始浓度为300mg/L时,SAC对Pb(Ⅱ)最大吸附量为122.56mg/g,并且在吸附过程的前80min内可达到总吸附量的95%以上。SAC对Pb(Ⅱ)的吸附过程可用Langmuir模型描述,动力学特性符合拟二级动力学模型。SAC对Pb(Ⅱ)的吸附的热力学参数ΔG在-80~-20k J/mol之间,ΔH0,ΔS0,表明吸附是自发进行的物理吸附与化学吸附共同作用的放热过程。对吸附前后改性活性炭的傅里叶变换红外谱图分析表明,经过Na_2S改性后,活性炭表面引入了砜基,并且砜基强化了改性活性炭对Pb(Ⅱ)的吸附性能。  相似文献   

10.
活性炭纤维孔结构控制和表面改性   总被引:23,自引:0,他引:23  
活性炭纤维(ACF-ActivatedCarbonFiber)是本世纪七十年代发展起来的纤维状吸附剂[1]。其吸附性能与表面积、细孔直径、细孔分布等物理结构密切相关,同时与其表面化学结构密不可分,本文综述介绍ACF的孔结构控制方法和表面化学改性与吸附性能的关系。  相似文献   

11.
采用浸润-高温改性方法简易合成了磁性活性炭(GAC-Fe_3O_4),考察改性前后吸附材料对全氟辛酸(PFOA)的吸附性能。用SEM、FT-IR、XRD、BET和孔隙结构以及磁性能和载铁量进行表征分析。结果表明,GAC-Fe_3O_4表面已成功负载上了Fe_3O_4颗粒,且属于纳米级,对GAC表面的微孔造成堵塞的同时增加了吸附点位。用等温吸附模型和动力学模型拟合了GAC和GAC-Fe_3O_4对PFOA的吸附过程,探索了不同初始pH值对PFOA的吸附性能影响及对GAC和GAC-Fe_3O_4的Zeta电位影响。吸附实验结果表明,GAC-Fe_3O_4对PFOA的最大吸附量为588.24mg/g,比GAC高47.06%,在100h左右达到吸附平衡,且在酸性环境(pH=3)下,对PFOA的吸附效果最好。GAC和GAC-Fe_3O_4对PFOA的吸附过程符合Langmuir等温吸附模型和拟二级动力学模型,吸附机理主要为静电作用,疏水作用可能参与其中。  相似文献   

12.
采用密度泛函理论(DFT)B3LYP方法对全氟辛烷磺酸(PFOS)在锐钛型TiO2表面的化学吸附和物理吸附行为进行了研究,其中化学吸附包含双齿双核(BB)和单齿单核(MM)在内的4种可能的吸附构型.吸附能(Eads)及反应吉布斯自由能(ΔGads)的计算结果表明,PFOS分子易于与TiO2表面发生氢键作用吸附;化学吸附表现为PFOS分子与TiO2表面的水分子(H2O)和羟基(—OH)反应,且与取代—OH相比,H2O取代相对更容易发生,其中,MM1构型(取代一个表面水分子)为化学吸附中的优势构型.PFOS在锐钛矿表面吸附的热力学稳定性和反应自发性顺序如下:H-Bonded(氢键吸附)>MM1(取代一个表面水分子)>BB1(取代两个表面水分子)>MM2(取代一个表面羟基)>BB2(取代一个表面水分子和一个表面羟基).成键结构分析表明,TiO2表面H2O/—OH官能团与PFOS上的磺酸基之间形成了中等强度的氢键;在化学吸附过程中,电荷从PFOS分子向TiO2表面发生转移,生成Ti—O—S化学键,电荷转移主要来自PFOS分子的O和F原子.  相似文献   

13.
首次尝试以马尾松为原料的木质素制备低成本重金属吸附剂,采用N2物理吸附和红外漫反射技术对其结构和表面化学进行了表征,研究了pH值,温度对其吸附水溶液中Pb2 的影响,并与麦草木质素和商业活性炭进行了对比,探讨了它吸附重金属离子的吸附机理以及结构和表面化学对重金属离子吸附的影响。结果表明,马尾松木质素吸附剂对水溶液中Pb2 的吸附机理主要是化学吸附,其表面的功能基有利于吸附水溶液中Pb2 ,尽管商业活性炭的比表面积是马尾松碱木素的200多倍,在相同的实验条件下,所制备的马尾松碱木素对Pb2 的单位比表面积平衡吸附量却是商业活性炭的1000多倍。  相似文献   

14.
分别采用超临界甲醇流体、浓硝酸氧化、浓硝酸结合超临界甲醇流体等不同手段对椰壳活性炭进行了表面处理,用N2物理吸附、Boehm滴定、X光电子能谱仪(XPS)、电感耦合等离子原子发射光谱分析(ICP)、透射电镜(TEM)等手段研究了处理方法对活性炭表面孔结构及表面基团的影响;并以活性炭为载体,三氯化钌为活性前驱体,采用等容水浸渍法制备了钌炭催化剂,以葡萄糖加氢生产山梨醇为模型反应对制备的钌基催化剂的催化活性进行了评价.结果表明:各种处理方法对活性炭的比表面、孔径等孔结构性能影响不大;但超临界甲醇处理活性炭可明显减少活性炭表面含氧酸性基团的含量,尤其是羧基等不稳定基团的含量;而硝酸处理活性炭则可大幅度提高活性炭表面含氧酸性基团的含量,尤其是羧基等不稳定基团的含量增加更大.ICP分析结果表明:超临界甲醇处理活性炭并不改变活性炭样品对钌的吸附量,但硝酸氧化处理活性炭却能明显提高样品对钌的吸附能力.活性炭表面的这些含氧基团虽然有利于钌离子的吸附,但却不利于钌在活性炭表面的分散.由于超临界甲醇流体处理活性炭时的表面反应及萃取作用,可有效清除活性炭表面的不稳定含氧酸性基团,避免还原过程中钌的迁移聚集,使负载钌的分散度提高,有利于增强钌与活性炭间的相互作用,使钌部分缺失电子,钌的结合能升高;可明显提高负载钌炭催化剂葡萄糖催化加氢的活性.  相似文献   

15.
煤基活性炭分别用烧失处理和HNO3氧化处理后得到不同表面性质的活性炭,采用X射线光电子能谱(XPS)、N2吸附、酸碱滴定及零电荷点(pHPZC)对活性炭表面性质及孔结构进行表征,研究了活性炭表面性质对苯酚吸附平衡和吸附动力学影响.经HNO3氧化后,活性炭表面含氧基团显著增加,烧失处理后,表面含氧基团尤其是羧基显著减少.苯酚最大平衡吸附量随活性炭表面含氧基团的增多而减少,吸附速率常数与碳表面含氧基团的量呈正相关,而吸附活化能与活性炭在一定吸附条件下表面所带电荷多少相关.随着活性炭表面含氧基团增多,吸附活化熵增大(负值减小),苯酚在活性炭表面排列的有序性减小.静态吸附与动态吸附实验结果都表明:在含氧基团较少而碱性更强的活性炭上,发生化学吸附的程度更大.  相似文献   

16.
以四种离子交换树脂(两种强碱性树脂D201和D280、两种弱碱性树脂D301G和D301R)为原料,经过磺化、炭化、活化处理制备了树脂基球状活性炭。采用TG、SEM、N2吸附等对球状活性炭的收率、表面形貌、比表面积进行了表征,研究了所制球状活性炭对CO2的吸附性能。结果表明,磺化处理有助提高树脂球的炭化收率;得到的四种球状活性炭对CO2吸附性能良好,强碱性树脂球原料比弱碱性树脂球更具有优势,其中,由强碱性树脂球D201制得的树脂球状活性炭在30℃下对CO2的吸附量可达2.57 mmol/g;十次循环吸附之后,树脂球仍能保持很好的CO2吸附性能。  相似文献   

17.
采用浸渍法制备了四氟硼酸(HBF4)改性活性炭,并研究了其对模拟油中二苯并噻吩(DBT)的吸附脱除性能。利用傅里叶红外光谱(FT-IR)、差示热分析仪(TG-DTA)、X射线光电子能谱(XPS)以及N2吸附技术对吸附剂的表面态和孔结构进行了表征,考察了四氟硼酸浓度、热处理温度以及模拟油中DBT浓度对吸附脱硫效果的影响。结果表明,经质量分数0.5%的HBF4溶液浸渍、140 ℃热处理后,在剂油比1:100条件下,活性炭的吸附容量为352 mg/g,较未改性活性炭提高了72.5%。  相似文献   

18.
活性炭纤维吸附脱除NO过程中NO氧化路径分析   总被引:1,自引:0,他引:1  
在小型固定床吸附实验台上开展了黏胶基活性炭纤维吸附脱除NO的实验研究。采用H2O2溶液浸渍以及热处理方法对活性炭纤维表面进行修饰,以获得表面孔隙结构接近而含氧官能团含量不同的样品;考察样品在惰性氮气气氛、含氧气氛下吸附脱除NO的效果,以及表面含氧含氮官能团的变化规律。探讨了含氧官能团在NO催化氧化过程中的作用及含氧气氛下O2对于NO转化为NO2的影响,分析了活性炭纤维表面吸附的NO向NO2的主要转化途径。结果表明,在氮气气氛下活性炭纤维表面C-O官能团对吸附态的NO起到氧化作用,吸附态NO被C-O官能团氧化生成-NO2官能团;在含氧气氛下活性炭纤维吸附NO后表面出现-NO2、-NO3官能团,通过长时间实验测定三种样品在含氧气氛下对NO吸附的效果,发现三种样品稳定时催化氧化效果一致,表明含氧官能团对初始NO的物理吸附影响较大,而对整个吸附过程影响较小。吸附在活性炭纤维表面上的NO与环境气氛中的游离态O2发生氧化反应是NO转变为NO2的主要途径。  相似文献   

19.
以纤维素和纳米Fe3O4为原料制得磁性纤维素微球, 在纤维素微球表面选择合适的模板分子, 以甲基丙烯酸、 丙烯酰胺和N,N'-亚甲基双丙烯酰胺为功能单体, 采用水溶液聚合法制得表面分子印迹磁性纤维素微球. 采用傅里叶变换红外光谱(FTIR)、 X射线衍射(XRD)和振动样品磁强计(VSM)等表征了分子印迹聚合物微球的结构. 以罗丹明B(RhB)为模板分子, 通过吸附动力学与吸附热力学实验研究了表面分子印迹磁性纤维素微球对RhB的吸附性能, 结果表明, 制备的表面分子印迹磁性纤维素微球对罗丹明B具有特异性识别作用, 饱和吸附量达到0.542 mg/mg, 吸附平衡时间为10 h左右. 表面分子印迹磁性纤维素微球大大降低了对吸附环境的依赖, 并可重复利用.  相似文献   

20.
以改性磁性壳聚糖为载体,四环素(TC)为模板分子,采用表面聚合法制备磁性四环素分子印迹材料(MIP)。用FTIR对MIP进行表征。对MIP进行吸附性能研究,结果表明:MIP对TC的最大吸附量为56.60 mg/g;吸附平衡时间为1.5 h,且主要吸附过程由化学吸附控制;M IP对四环素类抗生素(TCs)具有良好的组选择性。同时以该印迹聚合物为固相萃取材料,建立了MISPE-HPLC分析方法,用于猪肉和蜂蜜样品中TCs残留分析,回收率范围84.0%~99.3%,RSD小于4.0%。所制备的M IP对样品中的TCs的分离富集效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号