首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A completely regular space X is called nearly pseudocompact if υX?X is dense in βX?X, where βX is the Stone-?ech compactification of X and υX is its Hewitt realcompactification. After characterizing nearly pseudocompact spaces in a variety of ways, we show that X is nearly pseudocompact if it has a dense locally compact pseudocompact subspace, or if no point of X has a closed realcompact neighborhood. Moreover, every nearly pseudocompact space X is the union of two regular closed subsets X1, X2 such that Int X1 is locally compact, no points of X2 has a closed realcompact neighborhood, and Int(X1?X2)=?. It follows that a product of two nearly pseudocompact spaces, one of which is locally compact, is also nearly pseudocompact.  相似文献   

2.
Full subcategories C ? Top of the category of topological spaces, which are algebraic over Set in the sense of Herrlich [2], have pleasant separation properties, mostly subject to additional closedness assumptions. For instance, every C-object is a T1-space, if the two-element discrete space belongs to C. Moreover, if C is closed under the formation of finite powers in Top and even varietal [2], then every C-object is Hausdorff. Hence, the T2-axiom turns out to be (nearly) superfluous in Herrlich's and Strecker's characterization of the category of compact Hausdorff spaces [1], although it is essential for the proof.If we think of C-objects X as universal algebras (with possibly infinite operations), then the subalgebras of X form the closed sets of a compact topology on X, provided that the ordinal spaces [0, β] belong to C. This generalizes a result in [3]. The subalgebra topology is used to prove criterions for the Hausdorffness of every space in C, if C is only algebraic.  相似文献   

3.
4.
A space Y is called an extension of a space X if Y contains X as a dense subspace. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X point-wise. For two (equivalence classes of) extensions Y and Y of X let Y?Y if there is a continuous function of Y into Y which fixes X point-wise. An extension Y of X is called a one-point extension of X if Y?X is a singleton. Let P be a topological property. An extension Y of X is called a P-extension of X if it has P.One-point P-extensions comprise the subject matter of this article. Here P is subject to some mild requirements. We define an anti-order-isomorphism between the set of one-point Tychonoff extensions of a (Tychonoff) space X (partially ordered by ?) and the set of compact non-empty subsets of its outgrowth βX?X (partially ordered by ⊆). This enables us to study the order-structure of various sets of one-point extensions of the space X by relating them to the topologies of certain subspaces of its outgrowth. We conclude the article with the following conjecture. For a Tychonoff spaces X denote by U(X) the set of all zero-sets of βX which miss X.
Conjecture. For locally compact spaces X and Y the partially ordered sets(U(X),⊆)and(U(Y),⊆)are order-isomorphic if and only if the spacesclβX(βX?υX)andclβY(βY?υY)are homeomorphic.  相似文献   

5.
Let H denote the halfline [0,∞). A point pH?H is called a near point if p is in the closure of some countable discrete closed subspace of H. In addition, a point pH?H is called a large point if p is not in the closure of a closed subset of H of finite Lebesgue measure. We will show that for every autohomeomorphism ? of βH?H and for each near point p we have that ?(p) is not large. In addition, we establish, under CH, the existence of a point xH?H such that for each autohomeomorphism ? of βH?H the point ?(x) is neither large nor near.  相似文献   

6.
Let X be a nonarchimedean space and C be the union of all compact open subsets of X. The following conditions are listed in increasing order of generality. (Conditions 2 and 3 are equivalent.) 1. X is perfect; 2. C is an Fσ in X; 3. C? is metrizable; 4. X is orderable. It is also shown that X is orderable if C??C is scattered or X is a GO space with countably many pseudogaps. An example is given of a non-orderable, totally disconnected, GO space with just one pseudogap.  相似文献   

7.
A point p ∈ βX\X is a remote point of X if p? clβXD for any nowhere dense D ? X. Van Douwen, and independently Chae and Smith, have shown that each non-pseudocompact space of countable π-weight has a remote point. Van Mill showed that many spaces of π-weight ω1, such as ω×2ω1 also have remote points.We show that arbitrarily large products of spaces with countable π-weight which are not pseudocompact have remote points. In particular, ω×2? for any infinite cardinal ?.  相似文献   

8.
We generalize and refine results from the author's paper [18]. For a completely regular Hausdorff space X, υX denotes the Hewitt realcompactification of X. It is proved that if υ(X×Y)=υX×υY for any metacompact subparacompact (or m-paracompact) space Y, then X is locally compact. A P(n)-space is a space in which every intersection of less than n open sets is open. A characterization of those spaces X such that υ (X×Y = υX×υY for any (metacompact) P(n)-space Y is also obtained.  相似文献   

9.
A metric space (X,d) has the Haver property if for each sequence ?1,?2,… of positive numbers there exist disjoint open collections V1,V2,… of open subsets of X, with diameters of members of Vi less than ?i and covering X, and the Menger property is a classical covering counterpart to σ-compactness. We show that, under Martin's Axiom MA, the metric square (X,d)×(X,d) of a separable metric space with the Haver property can fail this property, even if X2 is a Menger space, and that there is a separable normed linear Menger space M such that (M,d) has the Haver property for every translation invariant metric d generating the topology of M, but not for every metric generating the topology. These results answer some questions by L. Babinkostova [L. Babinkostova, When does the Haver property imply selective screenability? Topology Appl. 154 (2007) 1971-1979; L. Babinkostova, Selective screenability in topological groups, Topology Appl. 156 (1) (2008) 2-9].  相似文献   

10.
For topological products the concept of canonical subbase-compactness is introduced, and the question analyzed under what conditions such products are canonically subbase-compact in ZF-set theory.Results: (1) Products of finite spaces are canonically subbase-compact iff AC(fin), the axiom of choice for finite sets, holds.(2) Products of n-element spaces are canonically subbase-compact iff AC(<n), the axiom of choice for sets with less than n elements, holds.(3) Products of compact spaces are canonically subbase-compact iff AC, the axiom of choice, holds.(4) All powers XI of a compact space X are canonically subbase compact iff X is a Loeb-space.These results imply that in ZF the implications
  相似文献   

11.
An extension of the Tychonoff theorem is obtained in characterizing a compact space by the nets and the images induced by any family of continuous functions on it. The idea of this extension is applied to get a new process and new observations of compactifications and the realcompactification. Finally, a sufficient and necessary condition of a vector sublattice or a subalgebra of C1(X) to be dense in (C1(X),∥·∥) is provided in terms of the nets in X induced by C1(X), where C1(X) is the space of all bounded real continuous functions on a topological space X with pointwise ordering, and ∥·∥ is the supremum norm.  相似文献   

12.
In response to questions of Ginsburg [9, 10], we prove that if cf(c)>ω1, then there exists an open-closed, continuous map f from a normal, realcompact space X onto a space Y which is not realcompact. By his result the hyperspace 2x of closed subsets of X is then not realcompact, and the extension μf(vf) of f to the topological completion (the Hewitt realcompactification) of X is not onto. The latter fact solves problems raised by Morita [16] and by Isiwata [12] both negatively. We also consider the problem whether or not the hyperspace of a hereditarily Lindelöf space is hereditarily realcompact.  相似文献   

13.
By a characterization of compact spaces in Section 1, a process of obtaining a compactification (X,k) of an arbitrary topological space X is described in Section 2 by a combined approach of nets and open filters. The Wallman compactification can be embedded in X if X is Hausdorff and by a little modification, the compactification of X is the Stone-?ech compactification of X if X is Tychonoff.  相似文献   

14.
The 0-stitched disks property is introduced and shown to detect codimension one manifold factors of dimension n?4. It is shown that if a space X is an ANR and has the 0-stitched disks property, then X has the disjoint homotopies property. It follows that if a space X is a resolvable generalized manifold of dimension n?4 with the 0-stitched disks property, then X is a codimension one manifold factor. Whether or not the 0-stitched disks property is equivalent to the disjoint homotopies property remains an open question.  相似文献   

15.
Let X be a Hausdorff topological space and exp(X) be the space of all (nonempty) closed subsets of a space X with the Vietoris topology. We consider hereditary normality-type properties of exp(X). In particular, we prove that if exp(X) is hereditarily D-normal, then X is a metrizable compact space.  相似文献   

16.
Let X denote the product of m-many second countable Hausdorff spaces. Main theorems: (1) If S?X is invariant under compositions, m is weakly accessible (resp., nonmeasurable), and F?S is sequentially closed and a sequential Gσ-set which is invariant under projections for finite sets (resp., F?S is sequentially open and sequentially closed), then F is closed. (2) If S?X is invariant under projections and m is nonmeasurable, then every sequentially continuous {0, 1} valued function on S is continuous. (3) A sequentially continuous {0, 1}-valued function on an m-adic space of nonmeasurable weight is continuous. Now let X denote the product of arbitrarily many W-spaces and S?X be invariant under compositions. (4) Then in S, the closure of any Q-open subset coincides with its sequential closure.  相似文献   

17.
A metric space X is straight if for each finite cover of X by closed sets, and for each real valued function f on X, if f is uniformly continuous on each set of the cover, then f is uniformly continuous on the whole of X. A locally connected space is straight iff it is uniformly locally connected (ULC). It is easily seen that ULC spaces are stable under finite products. On the other hand the product of two straight spaces is not necessarily straight. We prove that the product X×Y of two metric spaces is straight if and only if both X and Y are straight and one of the following conditions holds:
(a)
both X and Y are precompact;
(b)
both X and Y are locally connected;
(c)
one of the spaces is both precompact and locally connected.
In particular, when X satisfies (c), the product X×Z is straight for every straight space Z.Finally, we characterize when infinite products of metric spaces are ULC and we completely solve the problem of straightness of infinite products of ULC spaces.  相似文献   

18.
We show that every KC space (X,τ), such that τ is minimal among the KC topologies on X, must be compact (not necessarily T2). This solves a long-standing question, first raised by R. Larson in 1973.  相似文献   

19.
This paper studies the compact-open topology on the set KC(X) of all real-valued functions defined on a Tychonoff space, which are continuous on compact subsets of X. In addition to metrizability, separability and second countability of this topology on KC(X), various kinds of topological properties of this topology are studied in detail. Actually the motivation for studying the compact-open topology on KC(X) lies in the attempt of having a simpler proof for the characterization of a completeness property of the compact-open topology on C(X), the set of all real-valued continuous functions on X.  相似文献   

20.
Within the class of Tychonoff spaces, and within the class of topological groups, most of the natural questions concerning ‘productive closure’ of the subclasses of countably compact and pseudocompact spaces are answered by the following three well-known results: (1) [ZFC] There is a countably compact Tychonoff space X such that X × X is not pseudocompact; (2) [ZFC] The product of any set of pseudocompact topological groups is pseudocompact; and (3) [ZFC+ MA] There are countably compact topological groups G0, G1 such that G0 × G1 is not countably compact.In this paper we consider the question of ‘productive closure” in the intermediate class of homogeneous spaces. Our principal result, whose proof leans heavily on a simple, elegant result of V.V. Uspenski?, is this: In ZFC there are pseudocompact, homogeneous spaces X0, X1 such that X0 × X1 is not pseudocompact; if in addition MA is assumed, the spaces Xi may be chosen countably compact.Our construction yields an unexpected corollary in a different direction: Every compact space embeds as a retract in a countably compact, homogeneous space. Thus for every cardinal number α there is a countably compact, homogeneous space whose Souslin number exceeds α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号