首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conducting polymer blends whose undiluted components have different properties are promising materials for specific applications and have attracted interest in recent years. The aim of this study was to obtain and evaluate the electrical conductivity of polyaniline doped with dodecylbenzenesulfonic acid (PAni.DBSA)/polyurethane thermoplastic (TPU) blends. The PAni.DBSA was synthesized from DBSA-aniline (DBSAn) salt through an emulsion polymerization in tetrahydrofurane (THF) or in the presence of polyurethane thermoplastic solution, resulting in pure PAni.DBSA or PAni.DBSA/TPU blends. Blends of PAni.DBSA/TPU were also prepared through casting, at room temperature, after dissolving both components in THF as a common solvent. The insulator-conductor transition was very sharp and the percolation threshold was lower than 2.7 wt% of PAni.DBSA. The electrical conductivity of PAni.DBSA/TPU blends, prepared by both methods, reached maximum values at a PAni.DBSA concentration of 40 wt%, close to the value observed for the undiluted conducting polymer. However, for a PAni.DBSA content lower than 30 wt%, the electrical conductivity was dependent on the blend preparation method. Blends were characterized by infrared spectroscopy, thermogravimetric analysis (TG) and optical microscopy. The electrical conducting characteristics of the PAni.DBSA/TPU blends prepared using different procedures indicate a high potential for their successful application in electrical processes.  相似文献   

2.
In this work, the influence of polyaniline (PAni) doped with both camphorsulfonic acid (PAni‐CSA) and dodecylbenzenesulfonic acid (PAni‐DBSA) on polyurethane (PU)/PAni blends was studied by rheological and morphological analyses. The effect of doped polyaniline on the attenuation of incident microwave radiation, in the frequency range from 8.0 to 12.0 GHz, was also investigated. The complex viscosity (η*) of PAni‐DBSA blends is observed to vary more significantly as a function of resting time than PAni‐CSA blends. This behavior is attributed to a better dispersion of PAni particles into the matrix on account of the presence of smaller agglomerates, as observed by optical and electron microscopy. However, this behavior has not been determinant on microwave absorption by the blends, with those that contain PAni‐CSA showing higher attenuation values. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Conducting composite membranes of bacterial cellulose (BC) and polyaniline doped with dodecylbenzene sulfonic acid (PAni.DBSA) were successfully prepared by the in situ chemical polymerization of aniline in the presence of hydrated BC sheets. The polymerization was performed with ammonium peroxydisulfate as the oxidant agent and different amounts of DBSA. The composites were characterized by X-ray diffraction, attenuation reflectance Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), impedance spectroscopy and small angle X ray scattering (SAXS). The highest electrical conductivity value was achieved by using a DBSA/aniline molar ratio of 1.5 because this condition provided a better penetration of PAni.DBSA chains inside the hydrated BC sheet, as observed by SEM. The in situ polymerization gives rise to conducting membranes with the surface constituted by different degree roughness as indicated by Nyquist plots obtained from impedance spectroscopy and confirmed by SAXS measurements. This preliminary work provides a new way to prepare cellulose-polyaniline conducting membranes which find potential applications as electronic devices, sensors, intelligent clothes, etc.  相似文献   

4.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

5.
Conductive elastomeric blends based on ethylene–propylene–5‐ethylidene–2‐norbornene terpolymer (EPDM) and polyaniline doped with 4‐dodecylbenzenesulfonic acid [PAni(DBSA)] were cast from organic solvents. Functionalization of the elastomer was promoted by grafting with maleic anhydride. Vulcanization conditions were optimized with an oscillating disk rheometer. The conductivity, morphology, thermal stability, compatibility, and mechanical behavior of the obtained mixtures were analyzed by in situ direct current conductivity measurements, atomic force microscopy, transmission electron microscopy, wide‐angle X‐ray scattering, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis, stress–strain and hysteresis tests. The vulcanization process was affected by temperature, the PAni content, and maleic anhydride. A reinforcement effect was promoted by the vulcanizing agent. The formation of links between the high‐molar‐mass phases and oligomers of PAni(DBSA) in the elastomeric matrix enhanced the thermal stability and ultimate properties of the blends. By the appropriate control of the polymer blends' composition, it was possible to produce elastomeric materials with conductivities in the range of 10?5–10?4 S · cm?1 and excellent mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1767–1782, 2004  相似文献   

6.
Electrically conductive elastomer blends based on polyaniline-dodecylbenzene sulfonic acid (Pani.DBSA) and nitrile rubber (NBR) were prepared by polymerization of aniline in the presence of NBR, using a direct, one-step in situ emulsion polymerization method. At the same PAni content, the conductivity of the in situ emulsion-polymerized blends is higher than that of blends produced by mechanical mixing of both components. In addition, a morphology with the presence of PAni in the form of microtubules was achieved by the in situ process. Stronger interaction between the components were also confirmed by Rheological processing analysis (RPA). The vulcanization process decreases the conductivity of the blends prepared by both methods. The in situ polymerized blends also display higher tensile strength and also higher crosslink density  相似文献   

7.
Electrically conductive heterogeneous binary polymer blends based on ethylene-propylene-diene-monomer (EPDM) and polyaniline (PAni) were prepared in a Haake Rheocord 90 rheometer, coupled with an internal mixer (counter rotating cam rotors) using different amounts of PAni doped with dodecylbenzenosulfonic acid (DBSA). Blends were crosslinked using two methods: (i) phenolic resin (SP-1045) as crosslinking agent and (ii) electron beam irradiation. The last method avoids the interference of the acid dopant in the crosslinking process and produces blends with higher conductivity.  相似文献   

8.
Blends of poly(vinylidene fluoride) (PVDF) and polyaniline (PAni) were prepared through melt blending in a batch mixer. The morphology, rheological behavior and electrical conductivity were investigated through transmission electron microscopy (TEM) and combined electro-rheological measurements. Through TEM analysis, it was possible to observe that all blends showed typical phase separation with the presence of conductive polymer aggregates. Deformations imposed during a strain sweep caused, not only disturbance of the linear viscoelastic behavior, but also changes in electrical conductivity. The oscillatory shear altered the morphology, breaking the PAni domains into smaller ones. This effect increases the distance between them and, consequently, resulted in a decrease of the electrical conductivity. The measurements under quiescent conditions and steady shear proved that the disturbance in morphology for PVDF/PAni system is non-recoverable. Through combined electrical and rheological measurements, it was possible to achieve good correlation between the electrical and flow behavior of PVDF/PAni blends.  相似文献   

9.
《European Polymer Journal》2006,42(8):1716-1727
Blends of poly(butadiene-co-acrylonitrile) elastomer [NBR] and polyaniline dodecylbenzenesulfonate [PAni.DBSA], with electrical conductivities up to 10−2 S cm−1, have been prepared by solution mixing and casting. Miscibility was maximised for NBR with high acrylonitrile (ACN) content, as predicted on the basis of simple solubility parameter calculations. Blends prepared using NBR with 48 wt% ACN had the lowest electrical conductivity percolation thresholds, and were much more conductive than previous thermally mixed blends. Optical and electron micrographs of blends prepared from NBR 48 wt% ACN also showed the lowest levels of phase separation. The FT-IR spectra of NBR-PAni.DBSA blends resembled a superposition of the spectra of the pure materials, but with significant peak shifts due to changing intermolecular interactions between the polymers. Under DSC analysis, thermal events for blends prepared with NBR 48 wt% ACN also showed the largest temperature shifts relative to those for the pure polymers, supporting the other evidence for interaction between the two polymers.  相似文献   

10.
Thermoplastic elastomers (TPEs) based on new generation ultrahigh molecular weight styrene‐ethylene‐butylene‐styrene (SEBS) and thermoplastic polyurethane (TPU) are developed and characterized especially for automotive applications. Influence of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) and maleic anhydride grafted ethylene propylene rubber (EPM‐g‐MA) as compatibilizers has been explored and compared on the blends of SEBS/TPU (60:40). The amount of compatibilizers was varied from 0 to 10 phr. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies revealed the dramatic changes from a nonuniform to finer and uniform dispersed phase morphology. This was reflected in various mechanical properties. SEBS‐g‐MA modified blends showed higher tensile strength. EPM‐g‐MA modified blends also displayed considerable improvement. Elongation at break (EB) was doubled for the entire compatibilized blends. Fourier‐transform infrared spectrometry (FTIR) confirmed the chemical changes in the blends brought about by the interactions between blend components and compatibilizers. Both SEBS‐g‐MA and EPM‐g‐MA had more or less similar effects in dynamic mechanical properties of the blends. Additionally, melt rheological studies have also been pursued through a rubber process analyzer (RPA) to get a better insight.  相似文献   

11.
This paper reports on functional polymer blends prepared by melt-processing technologies for proton-exchange membrane applications. Styrene–ethylene/butylene–styrene (SEBS) and high-density polyethylene (HDPE) were melt blended using twin-screw compounding, extruded into thin films by extrusion–calendering. The films were then grafted with sulfonic acid moieties to obtain ionic conductivity leading to proton-exchange membranes. The effect of blend composition and sulfonation time was investigated. The samples were characterized in terms of morphology, microstructure, thermo-mechanical properties and in terms of their conductivity, ion exchange capacity (IEC) and water uptake in an effort to relate the blend microstructure to the membrane properties. The HDPE was found to be present in the form of elongated structures which created an anisotropic structure especially at lower concentrations. The HDPE increased the membrane mechanical properties and restricted swelling, water uptake and methanol crossover. Room temperature through-plane conductivities of the investigated membranes were up to 4.5E−02 S cm−1 at 100% relative humidity, with an ionic exchange capacity of 1.63 meq g−1.  相似文献   

12.
This article describes electrically conductive polymer blends containing polyaniline‐dodecyl benzene sulfonic acid (PANI‐DBSA) dispersed in a polystyrene (PS) matrix or in crosslinked polystyrene (XPS). Melt blending of previously mixed, coagulated, and dried aqueous dispersions of PANI‐DBSA and PS latices lead to high conductivities at extremely low PANI‐DBSA concentrations (∼0.5 wt % PANI‐DBSA). In these blends, the very small size of the PANI‐DBSA particles and the surface properties (with surfactants used) of both the PANI and polymer particles play a major role in the PANI‐DBSA particle structuring process. The PANI‐DBSA behavior is characteristic of a unique colloidal polymeric filler with an extremely high surface area and a strong interaction with the matrix, evidenced by a significantly higher glass‐transition temperature of the matrix. The effect of the shear level on the conductivity and morphology of the PS/PANI‐DBSA blends was studied by the production of capillary rheometer filaments at various shear rates. An outstanding result was found for XPS/PANI‐DBSA blends prepared by the blending of aqueous XPS and PANI‐DBSA dispersions. Some of these blends were insulating at low shear levels; however, above a certain shear level, smooth surface filaments were generated, with dramatically increased and stable conductivities. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 611–621, 2001  相似文献   

13.
One of the major aims of research on intrinsically conducting polymers (ICP) is the production of blends combining the processing properties of thermoplastic polymers with the conductivity of conducting polymers. The main problem in applying ICP on a large scale in the plastic industry is the impossibility of plasticizing these polymers under heat and shear. However, the use of functionalized acids improves the thermal stability and processability of conductive polymers. In this work the doping process was carried out during processing, also denoted as “reactive processing”. This procedure reduces the number of steps to obtain the final product, PS/SBS/PAni. Blending of polystyrene with dodecylbenzenosulfonic acid doped polyaniline was carried in a double-screw extruder using the block copolymer of styrene and butadiene, SBS, as compatibilizer. A conductive thermoplastic (σ = 10−6-10−2 S cm−1) was obtained in the form of ribbons, which were used to evaluate the thermal, mechanical, morphological and electrical properties. We used SBS as compatibilizer and different formulations were tested according to a statistical response surface method. The mechanical and electrical properties of these thermoplastic blends are adequate for antistatic applications.  相似文献   

14.
The metal-like band structure and the tripping transfer of electrons between bipolarons and polarons found in polyaniline make it for elevated scientific validity. Through a soft template in situ oriented oxidative polymerization, self-assembled nano tubular structures of Acid red (AR88) dye-doped Polyaniline in the presence of hydrochloric acid medium (AR88/PAni/HCl) were prepared and characterized well using different analytical tools. The AR88 (5x10-4 M) doped PAni prepared in the presence of 1 M HCl shows higher conductivity (2.2679 Scm?1) and seized its eminent electrical properties. The presence of sulfonic acid group-containing AR88 provides a better environment to give higher conductivity than the PAni-HCl. Due to its better optical transparency, the as-synthesized samples were used for photovoltaic applications. The AR88/PAni/HCl was used as a photosensitizer in dye-sensitized solar cells which shows photoconversion efficiency of around 1.58 %.  相似文献   

15.
A series of proton exchange membranes have been prepared by the preirradiation grafting method. Styrene was grafted onto a matrix of poly(vinylidene fluoride) (PVDF) after electron beam irradiation. Part of the samples was crosslinked with divinylbenzene (DVB) or bis(vinylphenyl)ethane (BVPE). Subsequent sulfonation gave membranes grafted with poly(styrene sulfonic acid) and marked PVDF‐g‐PSSA. It was found that the intrinsic crystallinity of the matrix decreased in both the grafting and the sulfonation reaction in all the membranes. The graft penetration and the ion conductivity are influenced strongly by the crosslinker. The ion conductivity is considerably lower in crosslinked membranes than in noncrosslinked ones. Generally, the mechanical strength decreases with crosslinking. The membranes show a regular phase separated structure in which the sulfonated grafts are incorporated in the amorphous parts of the matrix polymer. The phase separated domains are small, of the order of magnitude of 100–250 nm. These were resolved on transmission electron micrographs and on atomic force images but could not be resolved with microprobe Raman spectroscopy. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1741–1753, 1999  相似文献   

16.
Changes in the conducting and hydrophilic properties of composites MF-4SC/polyaniline (PAni) under conditions of prolonged synthesis have been studied. A maximum of PAni content of about 0.20 by weight, which can be incorporated into the matrix of MF-4SC under these conditions of synthesis, is determined. Percolation behavior of electrical conductivity of the composites after drying was observed. The conductivity of PAni salt inside MF-4SC was estimated within the frames of the percolation model. Using the fibrous cluster model of the membrane and the conductivity data on individual PAni, theoretical assessment of the electrical conductivity of nanocomposite MF-4SC/PAni has been performed. Reasons for a significant reduction in the conductivity of PAni during its integration into the structure of the initial matrix were discussed. A scale of membrane conductivity, reflecting changes in the electrical conductivity of composites at various stages of synthesis, was drawn.  相似文献   

17.
The incorporation of small amount of ionic groups into hydrocarbon polymers results in unique physical properties and these polymers are called ionomers. They are effectively cross-linked through the association of ionic groups, forming multiplets or clusters. These associations are thermally labile to a greater or lesser extent depending on the composition of the ionic domains. In elastomeric ionomers, the thermolabile nature of the ionic domains permits the adequate flow at the processing temperatures, and hence the term ionic thermoplastic elastomers. Polar plasticizers are incorporated into ion-containing polymers in order to reduce the melt viscosity, resulting from the strong ionic associations, and to improve the processability. The introduction of ionic groups into the block copolymers improves their thermal stability and high temperature performance. The presence of ion-ion interactions in different rubber/plastic blends enhances the mechanical compatibility of the otherwise incompatible blends and thereby results in the formation of ionic thermoplastic elastomers, depending on the rubber to plastic ratios. In the absence of ionic groups the blend components are incompatible, as indicated by poor physical properties of the blends. However, the introduction of ionic groups onto the polymer chains causes a dramatic increase in compatibility between the rubbery and the plastic phases, as indicated by the synergism in physical properties. The present paper reviews the ionic thermoplastic elastomers based on elastomeric ionomers, block copolymer ionomers, and ionomeric polyblends.  相似文献   

18.
Conductivity stability at thermal environment of conductive polyaniline‐complexes/polyimide (PANI‐complexes/PI) blends, which were doped by camphorsulfonic acid (CSA) and dodecylbenzenesulfonic acid (DBSA), respectively, were investigated by conductivity measurements, electron spin resonance (ESR) spectra, differential and scanning thermometer (DSC). In the conversion process of PANI/Polyamic acid (PAA) to PANI/PI, the blend endeavored some kinds of alteration such as decomplexation of moisture and solvent, dissociation of dopant, crosslinking of PANI chain, and the imidization of PAA chain. PANI‐DBSA/PI showed higher thermal stability of conductivity than PANI‐CSA/PI, and both samples showed nearly linear decay of conductivity with increasing temperature showing greatly enhancement of conductivity stability. When they were exposed at near or over glass transition temperature, the conductivity decay became faster. The conductivity stability at base environment was also higher for PANI‐DBSA/PI due to difficulty in accessing of hydroxyl ion to PANI, which were resulted from dopant. DBSA‐doped blends showed increased polaron mobility and concentration at relatively high temperature, which led to extremely higher conductivity and its stability at high temperature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The surface grafting of hyperbranched cyclotriphosphazene polymer onto silica nanoparticles and carbon black was investigated. The grafting of hyperbranched cyclotriphosphazene polymer onto these surfaces was achieved by the repeated reactions of hexachlorocyclotriphosphazene with hexamethylenediamine from surface amino groups and sodium carboxylate groups, respectively. The percentage of grafting onto silica and carbon black surfaces exceeded 760 and 390%, respectively. However, it proved difficult to achieve the theoretical growth of cyclotriphosphazene polymer from these surfaces because of steric hindrance. The introduction of sulfonic acid groups was successfully achieved by the reaction of terminal chlorophosphazene groups of the hyperbranched polymer‐grafted silica and carbon black with sulfanilic acid. The content of sulfonic acid groups introduced onto silica and carbon black surfaces was 4.98 mmol/g and 5.70 mmol/g, respectively. The sulfonated cyclotriphosphazene polymer‐grafted carbon black was extremely hydrophilic, yielding stable colloidal dispersions in polar solvents. The sulfonated cyclotriphosphazene polymer‐grafted silica and carbon black showed ionic conductivity, with the conductance increasing exponentially with increasing relative humidity and temperature. This study may offer important leads in the application of silica nanoparticles and carbon black in polymeric membranes for fuel cells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4218–4226, 2008  相似文献   

20.
Three nanosized polyaniline (PAn) powders doped with ionic liquid and dodecyl benzene sulfonic acid (DBSA) or hydrochloric acid have been prepared for the first time in an ionic liquid-water emulsion system. The oil-phase ionic liquid is used as both a monomer solvent and doped counterion. The effects of different counterions on the properties (molecular weight, electrical conductivity, glass transition temperature, electrochemical activity) of PAn are investigated. PAn codoped with 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid and DBSA shows the highest molecular weight (81 104 g mol?1), the highest electrical conductivity (1.85 S cm?1), the lowest glass transition temperature (181°C) and the highest redox reaction current density; PAn doped with an ionic liquid only exhibits the lowest conductivity (0.0018 S cm?1) and a lower redox reaction current density. PAn codoped with ionic liquid and HCl shows higher conductivity. They also exhibit good electrochemical stability and charge-discharge performance. These indicate that codoping of different counterions under acidic conditions could improve the degree of oxidation and doping ratio of PAn and could result in high electrical conductivity and good electrochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号