首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Poly(ether sulfone) 10 kDa ultrafiltration membranes were modified by photolysis using ultraviolet light and graft polymerization of hydrophilic monomers onto the membrane surface to create more hydrophilic and lower fouling membrane surfaces. The modified membrane surfaces were characterized by FTIR/ATR and captive bubble contact angle measurements to determine chemical and hydrophilicity changes during modification. The modified membranes were compared with an unmodified poly(ether sulfone) (control) membrane as well as a commercial regenerated cellulose and a low protein adsorbing poly(ether sulfone) membrane using a newly developed standardized filtration protocol with 1 wt% bovine serum albumin. The best performing modified membrane was with N-vinyl-2-pyrrolidinone and showed a 25% increase in hydrophilicity, a 49% decrease in bovine serum albumin fouling, and a 4% increase in bovine serum albumin retention compared to the unmodified poly(ether sulfone) membrane. While the regenerated cellulose membrane had the lowest fouling and the low protein adsorbing membrane had the highest flux of all tested membranes, the N-vinyl-2-pyrrolidinone-modified membranes had the best combination of low fouling and high flux.  相似文献   

2.
A polypeptide, poly(γ-stearyl-l-glutamate) (PSLG), was grafted on the surface of hydrophobic polypropylene hollow fiber membranes through the ring opening polymerization of N-carboxyanhydride (NCA) of γ-stearyl-l-glutamate initiated by amino groups which was generated by ammonia plasma. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), together with water contact angle and bovium serum albumin adsorption measurements were used to characterize the modified membrane surface. The XPS and FT-IR spectra demonstrated that polypeptide was actually grafted on the membrane surface despite of the low degree of graft polymerization due to the hydroxyl groups on the membrane surface. To subject the ammonia plasma-treated membrane with γ-(aminopropyl)triethanoxysilane (γ-APS) which can react with hydroxyl groups and leave amino groups, the degree of graft polymerization could be improved. The bovium serum albumin adsorption measurement was conducted to further examine the surface properties of modified and original membranes. Potential applications of the PSLG grafted membranes are expected for enantiomer separation and/or enzyme immobilization.  相似文献   

3.
The reaction of cellulose phosphonate and N-vinyl-2-pyrrolidone in ethanol in the presence of sodium ethoxide was investigated and thermal stabilities and flame-retardant properties for cellulose phosphonate modified with N-vinyl-2-pyrrolidone were discussed. The results in this study point out the following important aspects of flame retardation of cellulose fabrics: (1) The reaction of cellulose phosphonate and N-vinyl-2-pyrrolidone in the presence of sodium ethoxide results in graft polymerization of N-vinyl-2-pyrrolidone at P? H sites in cellulose phosphonate; an average chain length of the graft polymer is about five units of vinylpyrrolidone. (2) The graft polymerization of N-vinyl-2-pyrrolidone can improve both stabilities, especially the flame-retardant properties of cellulose fabrics. (3) Amides, whether noncyclic or cyclic, are suitable for nitrogen compounds that can effectively operate as synergists.  相似文献   

4.
Reversible on/off-switching of bovine serum albumin (BSA) permeation through a thermoresponsive composite membrane with negligible permeation in the off-state is demonstrated. UV-photografting of poly(N-isopropylacrylamide) onto a poly(ethylene terephthalate) microfiltration membrane results in a hydrogel graft layer on the irradiated side of the membrane only. The amount of hydrogel grafted onto the membrane can be controlled by the amount of crosslinker. Above the lower critical solution temperature (LCST) of the hydrogel (on-state), the shrunken state of the graft layer appears to only partially cover the membrane, allowing BSA permeation through the uncovered pores. Provided the grafting degree is high enough, the swollen hydrogel covers the membrane completely below the LCST (off-state), thus preventing BSA permeation. The on-demand release mechanism proposed here is based on switching the membrane surface coverage rather than previously reported switches based on effective pore size or hydrogel mesh size. The main advantage of our mechanism is that higher fluxes can be achieved in the on-state, since permeation is not limited by pore-narrowing.  相似文献   

5.
The results of study on the radical polymerization of N-vinyl-2-pyrrolidone containing a dissolved polyimide, an aromatic polyamide, and a polyarylate are presented. Formation of both poly(vinylpyrrolidone) homopolymer and its copolymers with the above condensation polymers is detected. The obtained (co)polymers differ from poly(vinylpyrrolidone) in heat resistance and solubility. It was shown that polyimides can be prepared in a N-vinyl-2-pyrrolidone medium followed by in situ polymerization of the latter.  相似文献   

6.
In this research, polystyrene (PSt) nanocapsules with liquid cores were prepared by 60Co γ-ray radiation induced miniemulsion polymerization, in which N-vinyl pyrrolidone (NVP) was used as the polar monomer. The characterization of polymer was carried out by 1H NMR. It was verified that during polymerization, graft copolymerization between poly (pyrrolidone) (PVP) and PSt had taken place instead of random copolymerization. The interfacial tension between polymer and water was reduced because of the grafting reaction that had occurred, which was helpful to form nanocapsules. The influence of the ratio of St to NVP, the type and amount of the surfactant and the monomer/dodocane ratio on the particle morphology was studied by TEM. Finally, the releasing process of the synthesized nanoparticles was monitored by UV-vis measurement.  相似文献   

7.
The electroinitiated polymerization of N-vinyl-2-pyrrolidone has been investigated. After electrolysis at controlled potential, a thin, covering, and homogeneous film of poly(N-vinyl-2-pyrrolidone) appears on the electrode. The insolubility of the polymer in its classical solvents implies the existence of a true chemical grafting of macromolecules on the platinum surface. Chain propagation occurs by a cationic mechanism initiated by a direct electron transfer leading to grafted cations on the surface, followed by the nucleophilic attack of neutral molecules. The molecular weight of the polymer was estimated by gel permeation chromatography after having mechanically removed the film from the electrode. A molecular weight distribution curve showing an average value of 16,000 was observed. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Summary: A modified poly (vinylidene fluoride) (PVDF) hollow fiber membrane with higher flux and flux recovery rate was prepared by γ-radiation induced grafting of acrylic acid (AA). The influence of radiation dose and monomer concentration on the grafting degree was investigated. The results indicated that the grafting degree increased in the lower monomer volume fraction until the monomer volume fraction exceeded 20%. The grafting degree increased with the increase of radiation dose. Structural and morphological of the original and grafted membrane surface were characterized by FT-IR, scanning electron microscopy (SEM). The results indicated that acrylic acid was grafted onto PVDF hollow fiber membrane and the grafted membrane was more hydrophilic than original PVDF. There was a slight increase of breaking strength and yield stress with the increase of the grafting degree of AA. The pure water flux increased initially but decreased subsequently with the raise of grafting degree. When the grafting degree was 4.4%, the maximum pure water flux reached 1496.3 L/m2 × h, 1.79 times of original membrane. The pure water flux, flux recovery rate and rejection ratio for bovine serum albumin could improve simultaneously in a low grafting degree (<4.4%).  相似文献   

9.
Reversible photocolor developments of viologens embedded in poly(N-vinyl-2-pyrrolidone) films, a typical polar aprotic solid matrix, were found to be affected by the kinds of viologen cation as well as the paired anion. The color developments in the corresponding low-molecular-weight solvents are connected closely to the solubility of viologens in these solvents; viologens are highly sensitive in the polar aprotic solvents in which they have poor solubilities, such as N-methyl-2-pyrrolidone and hexamethyl phosphoric triamide. These facts confirm the color-development mechanism consistings of electron transfer to the photoexcited viologen cation from the paired anion in polar aprotic solid matrices such as poly(N-vinyl-2-pyrrolidone).  相似文献   

10.
Deswelling kinetics of water and terbinafine hydrochloride adsorbed poly(N-vinyl-2-pyrrolidone/itaconic acid) P(VP/IA) hydrogels were investigated. Hydrogels were prepared by irradiating the ternary mixture of VP/IA and cross-linking agent ethylene glycol dimethacrylate (EGDMA) in water by γ-rays at ambient temperature. Hydrogels swelled in pure water and terbinafine hydrochloride (TER-HCl) solutions at room temperature and deswelling or water loss were investigated between 4 and 45 °C temperature range and on human skin. The influence of IA content, % swelling, temperature and TER-HCl content on the water loss from gel matrix were investigated. Induction time for 80% water loss from hydrogel systems are found to increase from 9.6 to 21.2 h by increasing IA content in the gel system at 25 °C and decreased by 11 h with addition of TER-HCl in the gel system. Kinetic analyses had shown that the basic properties affecting the water loss behavior of these hydrogels are the IA and TER-HCl content and temperature of the medium.  相似文献   

11.
Thermosensitive membranes were prepared by radiation-induced graft copolymerization of monomers on PET fabrics. A binary mixture of N-isopropyl acrylamide (NIPAAm) and acrylic acid (AA) was grafted on polyester fabric as a base material to introduce thermosensitive poly(N-isopropyl acrylamide) pendant chains having LCST slightly higher than 37 °C in the membrane. The influence of ferrous sulfate, radiation dose and monomer composition on the degree of grafting was studied. The structure of the grafted fabric was characterized by thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy. The thermosensitive nature of the fabric was monitored by swelling at different temperatures. The graft copolymerization of AA with NIPAAm enhanced the LCST of the resultant membrane to ∼37 °C. The moisture vapor transmission rate (MVTR) and air permeability of the fabric decreased slightly, may be due to the slight blocking of the fabric pores. The immobilization of tetracycline hydrochloride as the model drug and its release characteristics at different temperatures were monitored.  相似文献   

12.
The New Production Process for N-vinyl-2-pyrrolidone (NVP) consists of two stages: the synthesis of N-(2-hydroxyethyl)-2-pyrrolidone (HEP) from γ-butyrolactone (GBL) and monoethanolamine (MEA), and the vapor-phase dehydration of HEP to NVP. The key features of this technology are the dehydration catalyst and the vapor-phase reaction system. The catalyst is of very simple composition, being alkali (or alkaline earth) metal oxides–SiO2. Though its acid and base strengths are very weak, its catalytic performance is high. An IR spectroscopic study of the HEP-adsorbed catalyst indicated that the isolated silanol of the catalyst surface plays an important role.  相似文献   

13.
The properties of track membranes (TM) based on poly(ethylene terephthalate) (PETP) and polypropylene (PP) and modified by radiation-induced graft polymerization of 2-methyl-5-vinylpyridine (MVP) andN-isopropylacrylamide (NIPAA) were studied. The rate of grafting and the limiting degree of grafting increase linearly as the pore diameter of TM increases. The gasdynamic and hydrodynamic pore diameters of modified TM were determined. The dependence of water permeability of TM modified by grafting with poly(2-methyl-5-vinylpyridine) (PMVP) on the degree of grafting passes through a maximum, which, according to the data of wetting angle measurements, corresponds to the maximum hydrophilicity. The negative χ-potential of TM changes sign after modification by grafting with PMVP. Thermosensitive TM based on PETP and PP were prepared by radiation-induced graft polymerization of NIPAA. The structure of modified TM was studied by electron microscopy and atomic force microscopy. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 5, pp. 858–864, May, 2000.  相似文献   

14.
A copolymer containing vinylcyclohexane (VCH) and N-vinyl-2-pyrrolidone (VP) at different compositions was synthesized and characterized. The monomer reactivity ratios (MRR) were estimated by using the classical Fineman-Ross and Kelen-Tüdõs linear fitting methods. These parameters were also estimated using a nonlinear computational fitting procedure, known as reactivity ratios error in variable model (RREVM). In this case, the values of MRR are rVP=2.2 and rVCH=0.0. Composition shifts and MRR values for (vinylcyclohexane-co-N-vinyl-2-pyrrolidone) copolymer (VCH-co-VP) are interpreted in terms of the relative comonomeric structures. A copolymer with zones containing VP blocks with isolated units of VCH between them is obtained. The presence or absence of the resonance stabilization effect is taken into account. The results are compared with those of similar related copolymeric systems.  相似文献   

15.
采用常温下γ射线预辐照引发接枝的方法,在聚全氟乙丙烯(FEP)上接枝了丙烯酸(AA)和对苯乙烯磺酸钠(SSS),制备了一种含羧酸基团和磺酸基团的接枝膜.傅立叶变换红外光谱(FT-IR)分析证明了磺酸基团和羧酸基团的成功引入.采用XRD、TGA和接触角研究了接枝率对FEP膜的结晶度、热学特性及亲水性等性能的影响.结果表明,随着制备的FEP膜接枝率的增加,膜的结晶度、热稳定性和接触角逐渐减小;与此相反,FEP膜的亲水性能随接枝率的增加而增加.接枝膜湿敏性能测定结果表明,在相对湿度从5%RH变化到98%RH时,接枝膜电阻线性变化范围接近3个数量级,具有响应速度快(吸附<1min,解吸<2min),湿滞小(<3%RH)的特点,具有应用于电阻型湿度传感器的广阔前景.  相似文献   

16.
Block copolymers have been extensively used in the synthesis of many types of nanoparticles, where generally are considered as stabilizer and protective agent. In this work a double function of the biodegradable triblock copolymer poly(N-vinyl-2-pyrrolidone)-b-poly(ε-caprolactone)-b-poly(N-vinyl-2-pyrrolidone), (PVP-PCL-PVP) in the gold nanoparticle-copolymer synthesis is reported.Gold-copolymer composed nanoparticles were synthesized using the triblock copolymer (PVP-PCL-PVP) and potassium tetrachloro aurate (III), both in aqueous solution. The copolymer work as both, reductant and stabilizer agent. The obtained nanoparticles were characterized by FT-IR, dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The shape and the size of the obtained nanoparticles are dependent on the copolymer/salt of gold concentration ratio used in the synthesis.To complement the experimental results about the copolymer role in the nanoparticles synthesis, computational tools were used to characterize the reactivity of the reactant species.  相似文献   

17.
Gold nanoclusters stabilized by a hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (Au:PVP), catalyzed the intramolecular hydroamination of toluenesulfonamides to unactivated alkenes/alkynes in EtOH under aerobic and basic conditions. The reaction proceeds via anti-addition of toluenesulfonamide to the alkenes assisted by π-activation of the gold clusters.  相似文献   

18.
In this work, we fabricated the poly(N-vinyl-2-pyrrolidone)(PVP)-stabilized ruthenium(0) nanoclusters by reduction of RuCl_3 using different reducing agents, and studied their catalytic activity in hydrogen generation from the decomposition of formic acid.It was demonstrated that N-vinyl-2-pyrrolidone(NVP), which is a monomer of PVP, could promote the reaction by coordination with Ru nanoparticles. The Ru nanoparticles catalyst reduced by sodium borohydride(NaBH_4) exhibited highest catalytic activity for the decomposition of formic acid into H_2 and CO_2. The turnover of numenber(TOF) value could reach 26113 h~(–1) at 80 °C. We believe that the effective catalysts have potential of application in hydrogen storage by formic acid.  相似文献   

19.
N-vinyl-2-pyrrolidone-based hydrogels were prepared by the Diels-Alder reaction in water for the first time. Copolymers of N-vinyl-2-pyrrolidone(VP) and furfuryl methacrylate(FM) were synthesised by free radical polymerisation in toluene at 70 °C by using 2,2′-azobisisobutyronltrile as an initiator. Polymeric dienophile (PEG-AMI) was prepared from N-alaninyl maleimide (AMI) and poly(ethylene glycol) (PEG) by using N,N′-dicyclohexylcarbodiimide (DCC) as a dehydrating agent. The prepared dienes and dienophile were then dissolved in water and mixed, leading to gelation via Diels-Alder reaction after some time. The gelation times of different copolymers and PEG-AMI in different solvents and at different temperatures were measured by the vial inversion method, and the swelling behaviour of dried hydrogels was studied using a general gravimetric method. The gelation time was shorter in water than in organic solvents, and the gelation time decreased with the increase of temperature and FM content in copolymers. Conversely, the swelling ratios increased with the decrease of temperature and FM content in the copolymers. Disassembly experiments suggested that N,N-dimethylformamide (DMF) could accelerate the retro-DA reaction.  相似文献   

20.
A novel dual stimuli-responsive microcapsule with a superparamagnetic porous membrane and linear-grafted poly(N-isopropylacrylamide) (PNIPAM) gates in the membrane pores is successfully prepared and characterized. Oleic acid (OA)-modified Fe3O4 nanoparticles are embedded into the polyamide microcapsule membrane during interfacial polymerization process, and then plasma-induced grafting polymerization is used to graft PNIPAM into the pores of microcapsule membranes. The prepared microcapsule membranes exhibit time-independent superparamagnetic property with good magnetic-responsive ability, and satisfactory thermo-responsive controlled-release property due to the thermo-responsive swollen/shrunken property of PNIPAM gates grafted on the inner pore surface of the microcapsule membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号