首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have already shown that polylactide (PLA) nanoparticles covered with a hydrophilic polymeric layer can be prepared by simple emulsion/solvent evaporation by using amphiphilic copolymers as surfactants during the procedure. The external layer is then constituted by the hydrophilic part of the macromolecular surfactant. This kind of nanospheres is useful for the encapsulation of lipohilic molecules. The use of amphiphilic copolymers as surfactants in the preparation of PLA nanospheres with controlled surface properties, was then applied to the double emulsion/solvent evaporation procedure. The aim was to allow the encapsulation of water-soluble bioactive molecules in PLA particles with controlled surface properties. In this paper, we describe the results obtained with three different water-soluble monomethoxypolyethylene oxide (MPEO)-b-PLA diblock copolymers used as surfactants in the preparation of nanoparticles by double emulsion/solvent evaporation. After organic solvent evaporation, the obtained nanospheres were proved to be really covered by a MPEO layer whose characteristics were determined. It was firstly shown that the MPEO-covered particles did not flocculate at 25 degrees C, even in 4 M NaCl while suspensions of bare nanospheres were destabilized for a NaCl concentration as low as 0.04 M. On the other hand, the suspensions of MPEO-covered nanoparticles in 0.3 M Na2SO4 were found to be very sensitive to temperature as they flocculated at a temperature lying between 45 and 55 degrees C depending on the MPEO-b-PLA composition. This property was attributed to the fact that MPEO is a polymer with a low critical solution temperature. The concentration of MPEO at the nanoparticle surface was then calculated for the three kinds of particles, from the initial flocculation temperature, and was found to be comparable to the value determined directly.  相似文献   

2.
Advances in the nanoscale design of polymeric, “soft” materials and of metallic, “hard” materials can converge at the “interfaces” to form hybrid nanomaterials with interesting features. Novel optical, magnetic, electronic, and catalytic properties are conferred by metal nanoparticles, depending on their morphology (size and shape), surface properties, and long-range organization. We review here the utilization of block copolymers for the controlled synthesis and stabilization of metal nanoparticles. Solvated block copolymers can provide nanoscale environments of varying and tunable shape, dimensions, mobility, local polarity, concentration, and reactivity. In particular, block copolymers containing poly(ethylene oxide) can exhibit multiple functions on the basis of their organization at the intra-polymer level (i.e., crown ether-like cavities that bind and reduce metal ions), and at the supramolecular level (surface-adsorbed micelles, and ordered arrays of micelles). These block copolymers can thus initiate metal nanoparticle formation, and control the nanoparticle size and shape. The physically adsorbed block copolymers, which can be subsequently removed or exchanged with other functional ligands, stabilize the nanoparticles and can facilitate their integration into diverse processes and products. Block copolymers can be further useful in promoting long-range nanoparticle organization. Several studies have elucidated the nanoparticle synthesis and stabilization mechanism, optimized the conditions for different outcomes, extended the ranges of materials obtained and applications impacted, and generalized the scope of this functional polymer-based nanoparticle synthesis methodology.  相似文献   

3.
We have exploited novel supramolecular wrapping techniques by helix-forming polysaccharides, β-1,3-glucans, which have strong tendency to form regular helical structures on versatile nanomaterials in an induced-fit manner. This approach is totally different from that using the conventional interpolymer interactions seen in both natural and synthetic polymeric architectures, and therefore has potential to create novel polymeric architectures with diverse and unexpected functionalities. The wrapping by β-1,3-glucans enforces the entrapped guest polymer to adopt helical or twisted conformations through the convergent interpolymer interactions. On the contrary, the wrapping by chemically modified semi-artificial β-1,3-glucans can bestow the divergent self-assembling abilities on the entrapped guest polymer to create hierarchical polymeric architectures, where the polymer/β-1,3-glucan composite acts as a huge one-dimensional building block. Based on the established wrapping strategy, we have further extended the wrapping techniques toward the creation of three-dimensional polymeric architectures, in which the polymer/β-1,3-glucan composite behaves as a sort of amphiphilic block copolymers. The present wrapping system would open several paths to accelerate the development of the polymeric supramolecular assembly systems, giving the strong stimuli to the frontier of polysaccharide-based functional chemistry.  相似文献   

4.
As an emerging type of important macrocycles for supramolecular chemistry, pillararenes and their derivatives have been widely studied and applied in numerous fields, which intensively promotes the development of chemistry, materials science and biology.Pillararene-based theranostic systems are of special interest in the biological and medical areas as they have shown very promising results. Owing to easy preparation, reliable guest affinity, good biocompatibility and stability, pillararenes are frequently used to construct functional biomaterials. On one hand, pillararenes can either be used individually or form diversiform self-assemblies such as micelles, nanoparticles and vesicles to increase water solubility and biocompatibility of drugs.On the other hand, it is promising to modify solid materials like framework materials, silica nanoparticles and graphene oxides with pillararene derivatives to enhance their functions and controllability. In this review, we summarize recent endeavors of pillararene-based supramolecular systems with theranostics and other biological applications comprising drug delivery/chemotherapy, photodynamic/photothermal therapy, antimicrobials, bioimaging, etc. By introducing several typical examples, the design principles, preparation strategies, identifications and bio-applications of these pillararene-based supramolecular systems are described. Future challenges and directions of this field are also outlined.  相似文献   

5.
Two synthetic approaches to modify the surface of inorganic particles are presented. In the first approach the inorganic particles are prepared in-situ in a confined space in inverse emulsions. The used amphiphilic statistical copolymers act not only as emulsifiers, but they also hydrophobize the remaining inorganic particles after the precipitation. This approach represents a versatile method to obtain various inorganic nanoparticles as well as more complex inorganic materials like core-multiple shell and perovskite-based nanoparticles. The second procedure uses preformed inorganic particles, as an aqueous dispersion, to modify them with surface active amphiphilic copolymers in a multicomponent solvent system. This method turns out to be a simple but highly efficient method to modify preformed inorganic nanoparticles. The particles are characterized by SEM, TEM and dynamic light scattering. The modified inorganic nanoparticles are suitable to be homogenously incorporated into a polymer matrix to form transparent nanocomposite materials.  相似文献   

6.
A study has been made of various approaches to the problem of evaluating the permeability of a binary composite polymeric material on the basis of certain fundamental theoretical assumptions. In particular, it is assumed that the component phases form well-defined microscopic domains and do not interact with each other or with the penetrant. The main characteristics and relative merits of these treatments are considered in detail, and it is shown that considerable information can be obtained about the range of validity and physical significance of certain well-known formulas, which were previously applied in a largely empirical way. These results indicate specific fields of application (which include filled or semicrystalline polymers, foams, block and graft copolymers, and nonhomogeneous polymer blends) for each of the formulas in question and lead to a deeper understanding of the relation between permeability or analogous properties (such as thermal or electrical conductivity, electrical permittivity, elastic modulus, etc.) and the structural characteristics of composite polymeric (and other) materials.  相似文献   

7.
Poly(3-hydroxybutyrate) (PHB) and ist 3-hydroxyvalerate containing copolymers form a family of fully biodegradable polyesters with many potential applications. In this work, the results obtained in our laboratory concerning carbon dioxide, water and organic solvent transport through PHB and three low 3-hydroxyvalerate copolymers are reviewed. Comparison established between the former results and some data taken from the literature, have revealed that PHB and the above mentioned copolymers show transport properties similar to other common thermoplastics such as PVC and PET, particularly in the case of carbon dioxide and water. Consequently, PHB and copolymers can be catalogued as good barrier materials against these penetrants. On the other hand, these biopolymers show a low barrier character against organic compound permeation. All these features conform a good balance of physicochemical properties for these polyhydroxyalkanoates, which may take them suitable for several applications, including its use in biodegradable packaging materials.  相似文献   

8.
Poly(lactide)s [i.e. poly(lactic acid) (PLA)] and lactide copolymers are biodegradable, compostable, producible from renewable resources, and nontoxic to the human body and the environment. They have been used as biomedical materials for tissue regeneration, matrices for drug delivery systems, and alternatives for commercial polymeric materials to reduce the impact on the environment. Since stereocomplexation or stereocomplex formation between enantiomeric PLA, poly(L-lactide) [i.e. poly(L-lactic acid) (PLLA)] and poly(D-lactide) [i.e. poly(D-lactic acid) (PDLA)] was reported in 1987, numerous studies have been carried out with respect to the formation, structure, properties, degradation, and applications of the PLA stereocomplexes. Stereocomplexation enhances the mechanical properties, the thermal-resistance, and the hydrolysis-resistance of PLA-based materials. These improvements arise from a peculiarly strong interaction between L-lactyl unit sequences and D-lactyl unit sequences, and stereocomplexation opens a new way for the preparation of biomaterials such as hydrogels and particles for drug delivery systems. It was revealed that the crucial parameters affecting stereocomplexation are the mixing ratio and the molecular weight of L-lactyl and D-lactyl unit sequences. On the other hand, PDLA was found to form a stereocomplex with L-configured polypeptides in 2001. This kind of stereocomplexation is called "hetero-stereocomplexation" and differentiated from "homo-stereocomplexation" between L-lactyl and D-lactyl unit sequences. This paper reviews the methods for tracing PLA stereocomplexation, the methods for inducing PLA stereocompelxation, the parameters affecting PLA stereocomplexation, and the structure, properties, degradation, and applications of a variety of stereocomplexed PLA materials.  相似文献   

9.
The luminescence of the inorganic–organic hybrid nanoparticles ZrO(MFP) (MFP=methylfluorescein phosphate) and ZrO(RP) (RP=resorufin phosphate) was modified by addition of different rare earth halides LnCl3. The resulting composite materials form dispersible nanoparticles that exhibit modified nanoparticle fluorescence depending on the rare earth ion. The resulting chromaticity of the luminescence is further variable by the employment of different solvents for ZrO(MFP)-based composite systems. The strong solvatochromic effect of the MFP chromophore leads to different luminescence chromaticities of the composite materials between green, yellow, and blue in THF, toluene, and dichloromethane, respectively. The luminescence of ZrO(RP)-based composite particles can be modified between the red and blue spectral regions in dependence on the applied reaction temperature. Beside a luminescence shift that is derived from nanoparticle modification by LnCl3, a strong turn-on effect of ZrO(RP) particles results after contact with different Brønsted acids and bases in combination with a respective chromaticity shift. Both effects enable the potential employment of such particles as highly sensitive optical pH sensors.  相似文献   

10.
A new method is described, based on living amphipathic random macro-RAFT copolymers, which enables the efficient polymeric encapsulation of both inorganic and organic particulate materials via free-radical polymerization. The mechanism for this new approach is examined in the context of the polymer coating of zirconia- and alumina-coated titanium dioxide particles and its breadth of application demonstrated by the coating of organic phthalocyanine blue pigment particles. The particulate materials were first dispersed in water using a macro-RAFT copolymer as a stabilizer. Monomer and water-soluble initiator were then added to the system, and the monomer polymerized to form the coating. If nucleation of new polymer particles in the aqueous phase was to be avoided, it was found necessary to use a macro-RAFT copolymer that did not form micelles; within this constraint, a broad range of RAFT agents could be used. The macro-RAFT agents used in this work were found not to transfer competitively in the aqueous phase and therefore did not support growth of aqueous-phase polymer. Successful encapsulation of particles was demonstrated by TEM. The process described enables 100% of the particles to be encapsulated with greater than 95% of the polymer finishing up in the polymeric shells around the particles. Moreover, the coating reaction can be carried out at greater than 50% solids in many cases and avoids the agglomeration of particles during the coating step.  相似文献   

11.
In this study, an azobenzene dye, Dispersion Red 1 (DR1) was doped into the copolymers of methyl methacrylate(MMA) and butyl acrylate(BA) to obtain five bulk composites with varied ratios of methyl methacrylate to butyl acrylate. An experimental setup, in which the He-Ne laser produced signal beams and Ar+ laser, the pump beams was employed to investigate the photoinduced anisotropic properties of these samples. The results show that, the lower rigidity of the copolymers chains caused by the increased BA content would lead to a lower extent of birefringence for the samples. With the increased pump beam power, the extent of birefringence first slightly increased, reached a maximum value, and then decreased. These increases and then decreases would be caused by the co-effects of both orientation and saturation mechanism. On the other hand, the optical dichroism properties can be detected in the bulk samples with photoinduced anisotropic property. The birefringence and dichroism properties exhibited by the dye-doped bulk composites have great potential in optical devices and optical communication systems; in particular, these bulk polymeric materials are very important for three-dimensional optical applications.  相似文献   

12.
Silica nanoparticles (60 nm diameter) doped with fluorescent dyes and functionalized on the surface with thiol groups have been proved to be efficient fluorescent chemosensors for Pb2+ ions. The particles can detect a 1 microM metal ion concentration with a good selectivity, suffering only interference from Cu2+ ions. Analyte binding sites are provided by the simple grafting of the thiol groups on the nanoparticles. Once bound to the particles surface, the Pb2+ ions quench the emission of the reporting dyes embedded. Sensor performances can be improved by taking advantage of the ease of production of multishell silica particles. On one hand, signaling units can be concentrated in the external shells, allowing a closer interaction with the surface-bound analyte. On the other, a second dye can be buried in the particle core, far enough from the surface to be unaffected by the Pb2+ ions, thus producing a reference signal. In this way, a ratiometric system is easily prepared by simple self-organization of the particle components.  相似文献   

13.
ZnO nanoparticles in the form of quantum dots (QDs) have been dispersed in SiO2 matrix using StÖber method to form ZnO QDs-SiO2 nanocomposites. Addition of tetraethyl orthosilicate (TEOS) to an ethanolic solution of ZnO nanoparticles produces random dispersion. On the other hand, addition of ZnO nanoparticles to an already hydrolyzed ethanolic TEOS solution results in a chain-like ordered dispersion. The photoluminescence spectra of the as-grown nanocomposites show strong emission in the ultraviolet region. When annealed at higher temperature, depending on the sample type, these show strong red or white emission. Interestingly, when the excitation is removed, the orderly dispersed ZnO QDs-SiO2 composite shows a very bright blue fluorescence visible by naked eyes for few seconds indicating their promise for display applications. The emission property has been explained in the light of structure–property relationship.  相似文献   

14.
Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials′ tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.  相似文献   

15.
Carbon black (CB) is often incorporated in polymeric materials in order to modify their properties. The final properties of composite materials containing CB depend on, among other things, the nature of the carbon black, its concentration and its degree of dispersion. Therefore, there is a need to accurately characterize the degree of dispersion of carbon black in polymers. Although techniques based on optical microscopy can be used for detecting large agglomerates, they do not have the resolution to accurately quantify dispersions of particles having diameters less than 0.25 microns. Small angle X-ray scattering (SAXS) has the potential of being a useful and efficient tool for characterizing dispersions on length scales ranging from the order of 0.01 to 0.1 micron. The method is quick and provides an average value of the average agglomerate size through indirect measurements of the correlation length and the inner specific surface area. On the other hand. Transmission Electron Microscopy (TEM) allows for the direct visualization of the dispersion and measurements of each individual agglomerate. When coupled with computerized image analysis, size distributions of the agglomerates can be generated. In this article, characterization of model dispersions of carbon black using both SAXS and TEM are presented and a correlation between the two techniques are discussed.  相似文献   

16.
一般说来,高分子材料可以由小分子单体通过化学键结合而成[1],也可以通过非化学键的所谓超分子组装而成[2~4].后者是近年来高分子合成中十分活跃的领域.我们尝试将上述两种方法相结合来设计合成高分子功能材料,利用超分子化学法在设计功能性基团方面的便利性[2,5]和经典化学法在成键方面的有效性,提出了用"超分子结构单元"构筑高分子的方法.  相似文献   

17.
Inorganic/organic nanocomposite systems, in which inorganic particles are encapsulated into the polymer matrix, are new classes of polymeric materials. These materials combine the properties of both components. It means that polymer component with excellent optical property, flexibility and toughness could improve the brittleness of inorganic particles and besides, inorganic particles could increase the strength and modulus of polymers. There are various methods to make these inorganic/organic nanocomposites. One of them is the chemical process, in which polymerization is performed directly in the presence of the inorganic particles. Examples of miniemulsion, suspension or dispersion polymerization can be found in the literature but emulsion polymerization is by far the technique most frequently used.In this work, latex containing nanostructure hybrid of copolymer (styrene, methyl methacrylate, acrylic acid) and inorganic nanoparticles (silica) with core/shell structure was prepared via semi-batch emulsion polymerization. At first, silica nanoparticles were dispersed in water phase in an ultrasound bath to prevent the aggregation of nanoparticles, and then emulsion polymerization was performed in the presence of silica nanoparticles. Related tests and analysis confirmed the success in synthesis of nanostructure hybrids. Induced coupled plasma (ICP) analysis and thermal gravimetric analysis (TGA) showed the presence and amount of silica nanoparticles in the final latex. Dynamic light scattering (DLS) analysis confirmed the presence of 25-35 nm particles in the system and transmission electron microscopy (TEM) showed the core/shell morphology of nanoparticles. It has been shown that with an appropriate surfactant, adjusting the pH of media, using suitable monomers and under controlled conditions, it would be possible to produce stable organic/inorganic composite nanoparticles with core/shell structure. In another attempt and in order to investigate the effect of compatiblizing system, styrene-methyl methacrylate was copolymerized in the presence of modified silica particles with oleic acid as the inorganic dispersed phase at the same condition. Similar characterizations were performed in order to have a worthwhile comparison. The results for the late procedure show the effect of oleic acid in formation of aggregates as the core for polymeric nanocomposite particles.  相似文献   

18.
Summary: If long polyelectrolyte chains are attached densely to colloidal latex particles, a spherical polyelectrolyte brush results. These spherical polyelectrolytes are dispersed in water and carry a high charge. We demonstrate that these systems can be used to immobilize ions of heavy metals, such as gold, as counter‐ions. Reduction of these ions leads to metallic nanoparticles. In this way the brush layer attached to the surface of the particles becomes a “nanoreactor” that may be used for chemical conversions of the metal ions. We show that the reduction of AuClequation/tex2gif-stack-1.gif ions within these nanoreactors leads to well‐defined and rather monodisperse gold nanoparticles that are attached to the surface of the core. A stable dispersion of polymeric core particles with attached nanoparticles results. All results reported here suggest that chemical reactions of ions immobilized in spherical polyelectrolyte brushes provide a new route to composite particles of inorganic and organic materials.

Transmission electron micrograph of gold particles on a core‐shell system.  相似文献   


19.
To overcome the disadvantages both of microparticles and nanoparticles for inhalation, we have prepared nanocomposite particles as drug carriers targeting lungs. The nanocomposite particles having sizes about 2.5 μm composed of sugar and drug-loaded PLGA nanoparticles can reach deep in the lungs, and they are decomposed into drug-loaded PLGA nanoparticles in the alveoli. Sugar was used as a binder of PLGA nanoparticles to be nanocomposite particles and is soluble in alveolar lining fluid. The primary nanoparticles containing bioactive materials were prepared by using a probe sonicator. And then they were spray dried with carrier materials, such as trehalose and lactose. The effects of inlet temperature of spray dryer were studied between 60 and 120 °C and the kind of sugars upon properties of nanocomposite particles. When the inlet temperatures were 80 and 90 °C, nanocomposite particles with average diameters of about 2.5 μm are obtained and they are decomposed into primary nanoparticles in water, in both sugars are used as a binder. But, those prepared above 100 °C are not decomposed into nanoparticles in water, while the average diameter was almost 2.5 μm. On the other hand, nanocomposite particles prepared at lower inlet temperatures have larger sizes but better redispersion efficiency in water. By the measurements of aerodynamic diameters of the nanocomposite particles prepared with trehalose at 70, 80, and 90 °C, it was shown that the particles prepared at 80 °C have the highest fine particle fraction (FPF) value and the particles are suitable for pulmonary delivery of bioactive materials deep in the lungs. Meanwhile the case with lactose, the particles prepared at 90 °C have near the best FPF value but they have many particles larger than 11 μm.  相似文献   

20.
In sol–gel processing, porous ceramic membranes can be prepared by sol-coating porous substrates and drying for gelling, followed by a firing process. Ceramic membranes prepared by sol–gel processing can be categorized into amorphous materials such as silica, and crystalline materials such as alumina and titania. Amorphous silica networks, which can be prepared by the polymeric sol route, have ultra-microporous pores that allow small molecules such as helium and hydrogen to permeate. On the other hand, crystalline materials, which are mostly prepared by the colloidal sol route, have nano-sized pores in the range of one to several nanometers. In this article, sol–gel derived SiO2 and TiO2 membranes with controlled pore sizes in the range of sub-nano to nanometers will be reviewed with respect to membrane preparation and to their application in the separation of the gas and liquid phases. Ceramic membranes with high performance can be obtained by precise control of membrane structures (pore size, pore size distribution, thickness, pore shape, etc.) and membrane materials (SiO2, TiO2, composite oxide, hybrid materials, etc.). Nano/subnano-tuning of porous ceramic membranes is quite important for the improvement of membrane permeability and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号