首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The construction of amperometric enzymeless biosensors for phenolic compounds determination, using carbon paste electrode modified with copper phtalocyanine (CuPc) and histidine (His), based on the chemistry of the dopamine β-monooxygenase (DβM) enzyme that catalyzes the hydroxylation of the dopamine and its analogs is shown. The modified carbon paste was evaluated on electrodes constructed in two ways: putting the paste into a cavity of a rotating disk electrode and a platinum slide electrode fixed into a glass tube. The sensor in hydrodynamic conditions presented a linear response range between 30 and 250 μmol l−1, with a sensitivity of 4.6±0.1 nA l μmol−1 cm−2 for catechol, response time of 3 s and lifetime of about 50 days when stored at room temperature. The sensor in static conditions showed a linear response range from 40 to 250 μmol l−1, with a sensitivity of 0.30±0.01 nA l μmol−1 cm−2 for catechol. The sensors presented the following relative response order for dopamine and some analog species: catechol>dopamine>guaiacol>serotonin>phenol.  相似文献   

2.
A straight forward room-temperature synthesis of V(III) containing complex fluoride K3VF6, using KF and vanadium(III) acetylacetonate is reported. The pale green colored powder was characterized by chemical analysis, powder X-ray diffraction; diffuse reflectance spectroscopy, infrared spectroscopy, Raman spectroscopy, differential scanning calorimetry, scanning electron microscopy, photoluminescence spectroscopy, magnetic susceptibility measurements and photoluminescence spectroscopy. The powder X-ray diffraction pattern was fitted in P21/n space group (monoclinic) with a = 12.106 (1) Å, b = 17.685 (0) Å, c = 11.802 (0) Å, β = 92.23° (1). Differential scanning calorimetry showed phase transitions, occurring at 158 °C and 190 °C. In the FT-IR spectrum, characteristic band for the VF63− group was observed at 508 cm−1. The bands observed in the 335-361 cm−1 region and at 504 cm−1 in the room temperature Raman spectrum of K3VF6 corresponded to the F2g and A1g modes, respectively. The ratio of the frequencies (F2g/A1g) observed in the diffuse reflectance spectrum was fitted on the Tanabe-Sugano diagram to determine the Racah parameter B value of 712 cm−1. Magnetic ordering was not observed down to the lowest measured temperature of 5 K.  相似文献   

3.
The first room temperature ionic liquid (room temperature molten salt) containing oxyfluorometallate anion, 1-ethyl-3-methylimidazolium oxypentafluorotungstate (EMImWOF5), has been synthesized and characterized compared to other known EMIm fluorocomplex salts. EMImWOF5 is synthesized by two routes: one is the hydrolysis of EMImWF7 and the other is the fluoroacid-base reaction of EMIm(HF)2.3F and WOF4. EMImWOF5 is a hydrophilic room temperature ionic liquid but is stable in aqueous solution. From the result of DSC analysis, EMImWOF5 exhibits a glass transition at 182 K and melts at 253 K. The density, conductivity and viscosity at 298 K are 2.25 g cm−3, 3.0 mS cm−1 and 105.1 cP, respectively.  相似文献   

4.
The first room temperature molten salts containing hexafluorometallate anions of transition metals, 1-ethyl-3-methylimidazolium (EMIm) hexafluoroniobate, EMImNb(V)F6, and hexafluorotantalate, EMImTa(V)F6, have been synthesized by the reactions of EMImF·2.3HF with NbF5 and TaF5, respectively. They exhibit similar physical properties. Viscosities and conductivities are 49 cP and 8.5 mS cm−1 for EMImNbF6 and 51 cP and 7.1 mS cm−1 for EMImTaF6, respectively at 298 K.  相似文献   

5.
Thermoelectric properties of some metal borides   总被引:1,自引:0,他引:1  
Polycrystalline AlMgB14 and some hexaborides (CaB6, SrB6, YbB6, SmB6, and CeB6) were synthesized to examine their thermoelectric properties. Single phase of orthorhombic AlMgB14, which contains B12 icosahedral clusters as building blocks, was obtained at sintering temperatures between 1573 and 1823 K. Seebeck coefficient (α) and electrical conductivity (σ) of the phase were about 500 μV/K and 10−1 1/Ω m at room temperature, respectively. These values are comparable to those of metal-doped β-rhombohedral boron. On the other hand, metal hexaborides with divalent cation possessed large negative α ranging from −100 to −270 μV/K at 1073 K. Calculated power factors of CaB6 and SrB6 exceeded 10−3 W/K2 m within the entire range of temperature measured. As a result, they can be thought as promising candidates for n-type thermoelectric material.  相似文献   

6.
Zaijun L  You F  Zhongyun L  Jian T 《Talanta》2004,63(3):647-651
A spectrophotometric method was developed for the determination of iron(III)-dimethyldithiocarbamate (ferbam) by concerting it into an iron(III)-9-(4-carboxyphenyl)-2,3,7-trihydroxyl-6-fluorone complex. In NH3-HAc buffer solution (pH 6.5), the reagent reacts with ferbam to form a blue complex with a maximum absorption peak at 640 nm. The reaction can be completed rapidly at room temperature and the absorbance is stable for at least 24 h. The apparent molar absorption coefficient, Sandell’s sensitivity of the complex, the detection limit and the relative standard deviation were found to be 1.06×105 l mol−1 cm−1, 3.9 ng cm−2, 2.2 ng ml−1 and 1.06%, respectively. From 0 to 75 μg of ferbam in 25 ml solution the absorbance obeyed Beer’s law. The effect of foreign ions and other dithiocarbamates were also studied in detail. The results indicated that all coexisting ions examined can be tolerated in considerable amounts, especially other dithiocarbamates such as ziram and zineb, which always interfere with the determination of ferbam in the literature. The proposed method is very sensitive, selective and simple, it has been applied to determine ferbam in commercial samples.  相似文献   

7.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

8.
Single crystals of SrAl2Si2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl2Si2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P-3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at ∼1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of ∼7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from ∼−78 μV K−1 at room temperature to −34 μV K−1 at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm−1 K, and contributes to the overall low zT for this compound.  相似文献   

9.
In this research, new electrodes were prepared by incorporating a new calix[4]arene derivative into a plasticized poly(vinyl chloride) matrix. Calibration plots with Nernstian slopes (29.9 ± 1.1 mV/decade) for vanadyl ion were observed over a linear range of about four decades of concentration (1.0 × 10−5 to 1.0 × 10−1 mol dm−3, at 25 °C). This electrode revealed a lower limit of detection of 3.9 × 10−6 mol dm−3. Conductometric data showed the relatively strong interaction between calix[4]arene and vanadyl ions. The results show that this electrode can be used in acetonitril and methanol media until 10% (v/v) concentration without interference. It has a short response time and can be used for more than two months without any considerable divergence in the potentials. The influence of membrane composition, the pH of the test solution, and the interfering ions on the electrode performance was investigated. The effect of temperature on the electrode response showed that the temperature higher than 50 °C deteriorates the electrode performance. The isothermal temperature coefficient of this electrode amounted to 0.0015 V °C−1. The results of application show that the electrode can be used successfully in present Cr3+ and Fe3+.  相似文献   

10.
Tetraethylene glycol dimethylether-lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte is here studied. Electrochemical impedance spectroscopy (EIS) measurements demonstrate that the electrolyte has conductivity higher than 10− 3 S cm− 1 at room temperature and about 10− 2 S cm− 1 at 60 °C, while thermogravimetry indicates a stability extending up to 180 °C. Sweep voltammetry of the electrolyte shows anodic stability extending over 4.6 V vs. Li and cathodic peak at about 1.5 V vs. Li/Li+, caused by a decomposition of LiBOB salt, and following prevented by using a pre-treated Sn-C anode. Furthermore, LiFePO4 electrode is successfully used as cathode in a lithium cell using the TEGDME-LiBOB electrolyte. The promising electrochemical results, the low cost and the very high safety level candidate the electrolyte here reported as a valid alternative to the conventional electrolyte based on fluorinated salts presently used in the lithium ion battery field.  相似文献   

11.
A single-crystal X-ray diffraction analysis has been performed on KDyP4O12 synthesized by a flux method. The new compound crystallizes at room temperature in the monoclinic space group C2/c with unit cell parameters: a=7.812(2) Å, b=12.318(3) Å, c=10.441(2) Å, β=111.09(2)°, V=937.42(4) Å3 and Dcal=3.66 g cm−3 for Z=4. A full-matrix least square refinement gave R1=0.022, wR2=0.04 for 2421 independent reflections (I>2σ(I)) refined with 84 parameters.The structure is built up from P4O124− cyclotetraphosphate anions linked by DyO8 polyhedra to form a three-dimensional framework, which delimits intersecting oxygen tunnels in which the K+ ions are located. The atomic arrangement can be described as a succession of layers extending along the [010] direction. The P4O124− ring anion is centrosymmetrical is connected by irregularly shaped KO10 polyhedra to form a layer structure parallel to (001). Dysprosium and potassium are surrounded by eight and ten oxygen atoms respectively.Samples have been examined by impedance and infrared spectroscopy techniques. The reported IR absorption investigation, recorded at room temperature in the frequency range 200-4000 cm−1, shows some bands characteristic of cyclotetraphosphates.The electrical conductivity of KDyP4O12 has subsequently been measured as a function of temperature, it represents a significant ionic conductivity and activation energy (σ=2.15×10−4 Ω−1cm−1 at 453 K and Ea=0.387 eV) corresponding to the mobility of the K+ cations located within tunnels.  相似文献   

12.
A novel kind of sandwiched polymer membrane was prepared, which consists of two outer layers of electrospun poly(vinyl difluoride) (PVDF) fibrous films and one inner layer of poly(methyl methacrylate) (PMMA) film. Its characteristics were investigated by scanning electron microscopy and X-ray diffraction. The membrane can easily absorb non-aqueous electrolyte to form gelled polymer electrolytes (GPEs). The resulting gelled polymer electrolytes had a high ionic conductivity up to 1.93 × 10−3 S cm−1 at room temperature, and exhibited a high electrochemical stability potential of 4.5 V (vs. Li/Li+). It is of great potential application in polymer lithium-ion batteries.  相似文献   

13.
Solid electrolyte materials have the potential to improve performance and safety characteristics of batteries by replacing conventional solvent-based electrolytes. For this purpose, new candidate single ion conductor self-standing networks were synthesized with trifluoromethane-sulfonylimide (TFSI) lithium salt based monomer using poly(ethyleneglycol) dimethacrylate (PEGDM 750) as crosslinker. The highest ionic conductivity was 3.4 × 10−7 S cm−1 at 30 °C in the dry state. Thermal and mechanical analyses showed good thermal stability up to 190 °C and rubbery-like properties at ambient temperature. A direct relationship between ionic conductivity and glassy or rubbery state of the membranes was found. Vogel–Tammann–Fulcher behavior was observed in the dry state which is consistent with a lithium conductivity correlated with polymer chain mobility. By swelling the network in propylene carbonate, a self-standing electrolyte gel could be obtained with an ionic conductivity as high as 1 × 10−4 S cm−1 at 30 °C. The individual diffusion coefficients of mobile species in the material (19F and 7Li) were measured and quantified using pulsed-field gradient nuclear magnetic resonance (PFG-NMR). Diffusion coefficients for the most mobile components of the lithium cations and fluorinated anions at 100 °C in dry membranes have been found to be 3.4 × 10−8 cm2 s−1 and 2.1 × 10−8 cm2 s−1 respectively.  相似文献   

14.
A series of N-alkyl-N-methylpyrrolidinium (RMPyr+, where R = E: ethyl, B: butyl, and H: hexyl) and N-butylpyridinium (BPy+) salts based on the fluorocomplex anions, BF4, PF6, SbF6, NbF6, TaF6, and WF7, have been synthesized and their thermal behavior has been investigated. The melting points of the RMPyr+ salts are above room temperature with the trend; BMPyrAF6 < HMPyrAF6 < EMPyrAF6 for the hexafluorocomplex salts. Some of the salts containing BMPyr+ and HMPyr+ exhibit phase transitions in the solid states. Similar melting points of BPy+ salts of PF6, SbF6, NbF6, TaF6, and WF7 are observed at around 350 K. Ionic conductivity and viscosity for BMPyrNbF6 (3.0 mS cm−1 and 164 cP at 328 K) are similar to those for BMPyrTaF6 (3.0 mS cm−1 and 165 cP at 328 K), resulting from the similarity of the anions in size. The activation energies of ionic conductivity for the NbF6 and TaF6 salts are 18 and 20 kJ mol−1, and those for viscosity are 23 and 25 kJ mol−1, respectively calculated by Arrhenius equation in the temperature range between 328 and 348 K. Electrochemical windows of BMPyrNbF6, BMPyrTaF6, and BMPyrWF7 are about 4.0, 5.0 and 3.1 V, respectively.  相似文献   

15.
A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is ∼25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value (∼147 μV K−1) and low electrical conductivity (∼0.017 S cm−1). The formation mechanism of the PbTe nanoparticles and films is proposed.  相似文献   

16.
The influence of temperature on the structure of Bi9ReO17 has been investigated using differential thermal analysis, variable temperature X-ray diffraction and neutron powder diffraction. The material undergoes an order-disorder transition at ∼1000 K on heating, to form a fluorite-related phase. The local environments of the cations in fully ordered Bi9ReO17 have been investigated by Bi LIII- and Re LIII-edge extended X-ray absorption fine structure (EXAFS) measurements to complement the neutron powder diffraction information. Whereas rhenium displays regular tetrahedral coordination, all bismuth sites show coordination geometries which reflect the importance of a stereochemically active lone pair of electrons. Because of the wide range of Bi-O distances, EXAFS data are similar to those observed for disordered structures, and are dominated by the shorter Bi-O bonds. Ionic conductivity measurements indicate that ordered Bi9ReO17 exhibits reasonably high oxide ion conductivity, corresponding to 2.9×10−5 Ω−1 cm-1 at 673 K, whereas the disordered form shows higher oxide ion conductivity (9.1×10−4 Ω−1 cm−1 at 673 K).  相似文献   

17.
Infra-red (IR) photoacoustic spectroscopy (PAS) and attenuated total reflectance spectroscopy (ATR) were used to determine the diffusion coefficient of transdermally delivered nitroglycerin (NG) within a polyethylene glycol (PEG) saturated microfibre filter. The build-up of the drug within the probed layer was measured by monitoring the change in IR bands as a function of time. The absorbance was assumed to be directly proportional to the drug concentration. The diffusion coefficient of the nitroglycerin within the filter was calculated by fitting the theoretical diffusion model to the experimental diffusion profile. The diffusion coefficient of nitroglycerin within the filter was calculated to be (3.83±0.40)×10−7 cm2 s−1 and (4.31±0.60)×10−7 cm2 s−1 using PAS and ATR, respectively. The close agreement of the two values indicates the reliability of the techniques and diffusion models.  相似文献   

18.
Fakhari AR  Khorrami AR  Naeimi H 《Talanta》2005,66(4):813-817
A novel sensitive chromogenic reagent, N,N′-bis(3-methylsalicylidene)-ortho-phenylene diamine (MSOPD), has been synthesized and used in the spectrophotometric determination of nickel. At pH 8, MSOPD can react with nickel ion at room temperature to form a 1:1 complex. The apparent molar absorptivity is 9.5 × 104 l mol−1 cm−1 at 430 nm. Beer's low is obeyed over the range 0-1.0 × 10−5 M of nickel with a detection limit of 1.36 × 10−8 M. The relative standard deviation for measurement of 3.41 × 10−6 M nickel is 1.3% (n = 10). The method has successfully been applied to determination of trace amounts of nickel in some natural food samples.  相似文献   

19.
Composite solid electrolytes in the system (1 − x)LiNO3-xAl2O3, with x = 0.0-0.5 were synthesized by sol-gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed base centred cell type of point lattice of LiNO3 for the composite samples with x = 0.1-0.2 and body centred cell for the sample with x = 0.3. A trace amount of α-LiAlO2 crystal phase was also present in these composite samples. The thermal analysis showed that the samples were in a stable phase between 48 °C and 230-260 °C. Morphological analysis indicated the presence of amorphous phase and particles with sizes ranging from micro to nanometre scale for the composite sample with x = 0.1. The conductivities of the composites were in the order of 10−3 and 10−2 S cm−1 at room temperature and 150 °C, respectively.  相似文献   

20.
The structure of a complex, disordered type A-B carbonate apatite (CAp) of approximate composition Ca10(PO4)6−y(CO3)x+(3/2)y(OH)2−2x, x-0.7, y-0.6, synthesized at 3 GPa, 1400°C has been determined using single-crystal X-ray diffraction and FTIR spectroscopy at room temperature and pressure. Crystal data are: hexagonal, space group P63/m, Z=1; a=9.5143(3), c=6.8821(2) Å, V=539.5 Å3, and R=0.025. There are three structural locations for the carbonate ion. The channel carbonate is mainly in the closed vertical configuration of the structure, with two of its oxygen atoms close to the c-axis (A1 carbonate; IR bands at 1541 and 1449 cm−1), but subordinate amounts are also located in an open vertical configuration (A2 carbonate; IR bands at 1563 and 1506 cm−1). The type B carbonate ion is located close to the sloping faces of the PO4 tetrahedron (IR bands at 1474 and 1406 cm−1), confirming earlier inferences from polarized IR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号