首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The bandwidth of a gyrotron traveling wave amplifier (gyro-TWT) has been significantly increased by partially filling the interaction waveguide with dielectric to reduce the circuit's dispersion. The proof-of-principle experiment was designed for X-band, and employs the fundamental mode of rectangular waveguide loaded with dielectric slabs along the narrow sidewalls. The amplifier yields a peak output power of 55 kW with 11% efficiency, 27 dB saturated gain, and an unprecedented untapered gyro-TWT constant-drive bandwidth of 11% and saturated bandwidth exceeding 14%. The single-stage amplifier is completely zero-drive stable. The 95-kV 5-A electron beam was produced by a single-anode magnetron injection gun with pz=0.6, as determined by the EGUN code, and Δυzz=4%, determined as the best fit to the gyro-TWT large-signal simulation data. Simulation studies predict that by lowering the velocity spread to Δυ zz=2%, the amplifier performance will be further enhanced to a constant-drive bandwidth of 20% with 15% efficiency  相似文献   

2.
A low-magnetic-field moderate-voltage gyrotron amplifier has been designed for stable high-performance operation at 95 GHz. A slotted interaction circuit is utilized to achieve strong amplification near the third cyclotron harmonic frequency. The start-oscillation conditions were determined by an analytical theory and confirmed by a multimode particle-in cell simulation code. The dominant threat to the amplifier's stability is from a third-harmonic peniotron backward-wave interaction. A slow-timescale particle-tracing simulation code predicts the three-section slotted third-harmonic gyro-TWT, which utilizes an 11.6-kG magnet and a 50-kV 3-A υz=1.4 axis-encircling electron beam with an axial velocity spread of 6% will yield an output power of 30 kW with an efficiency of 20%, a saturated gain of 40 dB, and a constant-drive bandwidth of 2%  相似文献   

3.
The bandwidth of a gyro-TWT (traveling-wave tube) can be widened by employing a dielectric-loaded waveguide to reduce the circuit's dispersion. Fast wave interaction allows the requirements on the beam's quality to be relaxed compared with slow wave interaction. A low-α (≡νz) electron beam is chosen to avoid the absolute instability and minimize the possibility of dielectric charging. This device is investigated using a self-consistent single-mode, large-signal simulation based on a slow time scale formulation. Simulation results show that a constant drive bandwidth of 20% can be achieved for a 100 kV, 5 A electron beam with a velocity ratio of α=0.59 and an axial velocity spread of 2.0%. The growth rate is relatively low because of the low α of the electron beam. The design of a proof-of-principle experiment is described. The tube is expected to deliver a power of 80 kW from 9 to 11 GHz with 15% efficiency and a saturated gain of 30 dB. The performance of a single-anode magnetron injection gun designed to produce the required high-quality electron beam has been studied through simulation  相似文献   

4.
5.
A nonlinear self-consistent simulation code is employed to investigate the behavior of the slotted gyrotron traveling-wave amplifier (gyro-TWT), in which an axis-encircling electron beam synchronously interacts with a high-order azimuthal mode in a magnetron-type waveguide. The efficiency of a fourth-harmonic device with an ideal 60 kV, 5 A beam is shown to reach 30% for α≡νz=2. The growth rate for the π mode is roughly 25% larger than for the 2π mode. The efficiency increases for lower voltage and the device is found to be moderately sensitive to the radial spread of the beam's guiding center position and extremely sensitive to the axial velocity spread. For an ideal 60 kV, 5 A beam with α=1.5, the efficiency of a second-harmonic gyro-TWT is 42% and falls to 10% for an eighth-harmonic device. The design of a 35 GHz, 60 kV, 5A, α=1.5, eight-vane, fourth-harmonic gyro-TWT with 7% axial velocity spread is presented. It is predicted that this design will yield a peak output power of 90 kW, a peak efficiency of 30%, and 6.3% saturated bandwidth  相似文献   

6.
A four section, TE01 mode W-band gyrotwystron amplifier has been designed, built, and tested. The circuit consists of three cavities followed by a traveling wave output section, each operating near the fundamental cyclotron frequency. The gyrotwystron has produced 50 kW peak output power, corresponding to 17.5% efficiency for a 57 kV, 5 A electron beam; the amplifier is zero drive stable at the operating point. The measured center frequency is 93.9 GHz with a full width half maximum instantaneous bandwidth of 925 MHz. These results represent a substantial improvement in the power-bandwidth product over previously demonstrated gyro amplifiers in this band. The small signal and saturated gains were 39 and 30 dB, respectively. The measured results are in good agreement with theoretical predictions  相似文献   

7.
The concept that the relatively weak harmonic gyro-TWT interactions allow high values of electron beam current for stable operation has been extended to design two extremely high power, 140 GHz, third-harmonic TE31 gyro-TWT amplifiers. One device is driven by an axis-encircling electron beam from a cusp gun and the other employs a magnetron injection gun (MIG). These devices are predicted by a self-consistent nonlinear numerical simulation code to yield, respectively, output powers of 775 kW and 937 kW with 15.5% and 18.7% efficiency, saturated gains of 27 dB and 30 dB, and saturated bandwidths of % and 6.5%. The stability of the amplifiers is ensured by limiting the length of the interaction section(s) to the shortest starting oscillation length as determined by linear theory. The cylindrical waveguide circuits of both amplifiers have been sliced to suppress modes without a threefold azimuthal symmetry. The amplifier utilizing a MIG yields superior performance because the dominant competing interaction is minimized for the choice of the beam's guiding center radius. The advantages as well as limitations of this approach for high power microwave generation are also addressed  相似文献   

8.
The inverted gyrotwystron (phigtron) is a millimeter wave frequency-doubling amplifier that has been demonstrated to produce over 300 kW peak power at twice the input frequency (centered at fin =16.85 GHz and fout=33.7 GHz) over a 0.5% bandwidth with a saturated gain of 30 dB and efficiency greater than 35%. The device has also been studied both theoretically and experimentally in a different operating regime where frequency-doubled, phase-locked oscillation is possible. A signal, injected via a fundamental gyro-traveling wave tube input section, modulated a 55 kV, 10 A electron beam. After transit through a drift section, the prebunched electron beam produced phase-locked, second harmonic oscillations in a TE03 mode output cavity. RF output centered at either of two frequencies, 34.42 and 34.62 GHz, with a maximum output power of 180 kW, an efficiency of 32% and a locked signal gain of 35 dB was measured. A theoretical prediction of locking bandwidth, a design overview, and the experimental results are presented followed by a summary and discussion of the results  相似文献   

9.
罗积润  唐彦娜  樊宇  彭澍源  薛谦忠 《物理学报》2018,67(1):18402-018402
基于目前国际上实验研究的均匀介质加载和周期介质加载结构,建立了一种分布式损耗加载回旋行波管(gyro-TWT)多模稳态注波互作用理论.利用这一理论,以TE01模式基波gyro-TWT注波互作用为例,将Ka和W波段的理论结果与实验和软件仿真进行比较,以证实理论的合理性.  相似文献   

10.
张强  袁成卫  陈俊  余龙舟  赵雪龙 《强激光与粒子束》2018,30(6):063003-1-063003-4
对比分析了几种可输出圆波导TE01模激励器的仿真设计结果。结果表明,利用行波功分结构实现矩形波导TE10模到4路矩形波导TE10模的等幅同相功分,进而合成转换成圆波导TE01模的转换过程,可在较宽的频带范围内,实现圆波导TE01模的高效激励。以中心频率9.40 GHz仿真设计的圆波导TE01模激励器,在中心频率上的传输效率超过99.9%;在9.08~9.61 GHz的频率范围内,传输效率大于99%。实验测量结果表明,所加工激励器在较宽的频带范围内,传输损耗优于-0.2 dB,与仿真结果的差异主要来自于波导壁面的欧姆损耗和波同转换结构;器件工作频带内平坦特性良好,有利于开展测量工作。  相似文献   

11.
We have designed and experimentally demonstrated the operation of a novel quasioptical gyrotron oscillator based on an overmoded confocal waveguide cavity. This cavity effectively suppresses undesired modes, and therefore has extremely low mode density. Stable single-mode, single-frequency operation was achieved in the TE06 mode at 136 GHz. A peak RF output power of 66 kW, corresponding to an efficiency of 18%, was measured. By varying the cavity magnetic field, high-power generation was observed at 136 GHz in the TE06 mode and at 114 GHz in the TE05 mode. These frequencies correspond to the high Q modes of the confocal resonator. The low Q modes were either weak or not observed. In this paper, we will review the design procedure for this cavity and present experimental data verifying its effectiveness in reducing the number of modes that can be excited. The confocal waveguide could also be used in high-power, gyro-TWT amplifiers to provide greater operating stability and bandwidth, especially in an overmoded waveguide structure  相似文献   

12.
沈文渊  王虎  耿志辉  杜朝海  刘濮鲲 《物理学报》2013,62(23):238403-238403
基于不规则波导模式匹配法以及缓变波导中电磁波模式耦合理论,研究了一种W波段圆波导TE62模式激励器. 该波导模式激励器采用矩形波导TE10模式通过侧壁耦合馈入同轴波导,利用同轴波导的选模特性激励TE61模式;随后利用轴向半径周期微扰的圆波导实现TE61–TE62模式变换. 文中推导了矩形-同轴波导模式匹配理论,系统研究了波导结构缓变参数对模式变换效率的影响,完成了模式变换器的优化仿真设计,数值计算结果表明:中心频率处TE62模式的转换效率为94.5%,纯度为98.16%,效率85%以上带宽达到1 GHz,能够满足回旋管冷测的要求. 关键词: 同轴波导 模式变换 耦合模理论 半径微扰  相似文献   

13.
梁源  刘庆想  张健穹  李相强 《强激光与粒子束》2018,30(8):083005-1-083005-5
设计了一种尺寸紧凑并具有高功率容量的圆波导TE11-TM01模式转换器,结构呈直角转弯形状。该转换器利用传输TE11模式的圆波导与其E面分支耦合进行模式转换,并在TM01输出端口的反向传输短路面加入调配螺钉来拓宽频带。设计结果表明,转换器在工作频率12.7 GHz处的转换效率为99.6%,大于90%的带宽约20%,填充SF6绝缘气体工作时可获得12 MW的功率容量。  相似文献   

14.
The operating characteristics of a two-cavity X-band gyroklystron experiment are reported. Beam voltages and currents up to 440 kV and 200 A, respectively, are generated in 1 μs pulses by a thermionic magnetron injection gun. Velocity ratios (νz) near one in the output cavity are used to achieve peak powers of 24 MW near 9.87 GHz. The maximum saturated efficiency of more than 33% occurs at a beam voltage of 425 kV and a current of 150 A. A large signal gain in excess of 34 dB is realized by operating the input cavity just below the start oscillation threshold. Details of tube stability and the dependence of amplification on magnetic field profile, input signal parameters, and various beam quantities are presented  相似文献   

15.
喻寄航  宫玉彬  王战亮  余川  廖勇 《强激光与粒子束》2018,30(2):023003-1-023003-4
过模圆波导在提高功率容量的同时,不可避免地会造成微波源中同时存在多种模式。为了监测X波段长脉冲高功率微波源TM01模的输出功率和频谱,采用CST软件仿真设计了X波段高功率宽带选模定向耦合器,在耦合TM01模的同时可实现对TM02和TE11模的抑制。波导腔体及耦合孔的尺寸以小孔耦合理论和相位叠加原理为基础并结合切比雪夫分布函数计算确定。仿真结果表明:该高功率宽带选模定向耦合器在9.0~9.8 GHz的带宽范围内,耦合度为(-59.08±1) dB,定向性大于30 dB,对TE11模的抑制度大于15 dB,对TM02模的抑制度大于30 dB,功率容量大于2.5 GW。  相似文献   

16.
A wideband low-voltage millimeter-wave gyro-traveling wave tube (gyro-TWT) amplifier operating in the TE10 rectangular waveguide mode at the fundamental cyclotron frequency is under investigation, The device incorporates precise axial tapering of both the magnetic field and the interaction circuit for broadband operation. Experimental results of a wide (33%) instantaneous bandwidth with a small signal gain in excess of 20 dB and saturated efficiency of ~10% were achieved and shown to be in good agreement with the theory. Reflective instability due to multi-pass effects by mismatches was observed and characterized. Gain and efficiency have been limited by this reflective instability rather than by absolute instabilities which limit the performance of gyro-TWT's with uniform cross-section. The start-oscillation current in terms of the relevant experimental parameters such as the beam velocity ratio (α), magnetic field detuning and reflection coefficient has been measured and compared with theory. Measurements of the phase variation in terms of the RF frequency have shown that the phase varies ±30° from fitted linear phase line  相似文献   

17.
A low-voltage second-harmonic gyrotron intended as a compact lightweight source has been designed and evaluated with a particle-tracing code and the particle-in-cell code MAGIC. The two codes are shown to be in good agreement when applied to a conventional fundamental-frequency gyrotron and also to the novel second-harmonic gyrotron. The 25-kW continuous wave (CW) 94-GHz gyrotron with a predicted conversion efficiency of 32% and device efficiency of 22.5% is driven by a 25-kV 4.5-A (υ2=1.5, Δυzz=7%) electron beam from a magnetron injection gun and employs a low-loss TE021/TE031 complex cavity for mode control. Although the 17-kG CW gyrotron will use a cryogen-free high-Tc superconducting magnet, a 94-GHz prototype will be tested at low duty with a conventional low-Tc superconducting magnet  相似文献   

18.
A linear analysis of the electron-beam deflection system in a magnicon amplifier is presented. The system consists of identical cavities, one driven and the remainder passive, separated by a drift space and immersed in an axial magnetic field. The cavities contain a rotating TM110 mode. The length of each cavity is πν z/ω, and that of the drift space is πνzc, where ω is the RF frequency, ωc is the relativistic gyrofrequency in the guide field, and νz is the mean axial velocity of the beam electrons. The linearized electron orbits are obtained for arbitrary initial axial velocity, radial coordinate, and magnetic field. The small-signal gain and the phase shift are determined. The special case where ωc/ω=2 has unique features and is discussed in detail. For the NRL magnicon design, a power gain of 10 dB per passive cavity is feasible. Results from numerical modeling of a magnicon with two passive cavities are presented. Operation of the output cavity at the fundamental and higher harmonics of the input drive frequency is briefly discussed  相似文献   

19.
The self-consistent nonlinear theory of two-cavity high-harmonic gyroklystron amplifier has been developed. The efficiency and gain of a second-harmonic gyroklystron were calculated numerically. The results obtained were used to choose the optimal parameters of the experimental second-harmonic tube. The experimental study was carried out to test high-harmonic amplifier concept. Two-cavity 35 GHz second harmonic gyroklystron with the TE021 cavity mode has been designed and tested in pulse operation. Output power of about 260 kW with efficiency 18% and 17 dB gain have been produced at 72 kV beam voltage and 20 A beam current. Bandwidth of about 0.1% has been observed. The restriction of the output power, efficiency, and gain was caused by spurious oscillations excited in the second cavity in the TE011 mode at the fundamental cyclotron frequency  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号