首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The energy of a graph is equal to the sum of the absolute values of its eigenvalues. The energy of a matrix is equal to the sum of its singular values. We establish relations between the energy of the line graph of a graph G and the energies associated with the Laplacian and signless Laplacian matrices of G.  相似文献   

2.
Let G=(V,E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the Laplacian matrix of G is L(G)=D(G)-A(G) and the signless Laplacian matrix of G is Q(G)=D(G)+A(G). In this paper we obtain a lower bound on the second largest signless Laplacian eigenvalue and an upper bound on the smallest signless Laplacian eigenvalue of G. In [5], Cvetkovi? et al. have given a series of 30 conjectures on Laplacian eigenvalues and signless Laplacian eigenvalues of G (see also [1]). Here we prove five conjectures.  相似文献   

3.
The energy of a graph G is the sum of the absolute values of the eigenvalues of the adjacency matrix of G. The Laplacian (respectively, the signless Laplacian) energy of G is the sum of the absolute values of the differences between the eigenvalues of the Laplacian (respectively, signless Laplacian) matrix and the arithmetic mean of the vertex degrees of the graph. In this paper, among some results which relate these energies, we point out some bounds to them using the energy of the line graph of G. Most of these bounds are valid for both energies, Laplacian and signless Laplacian. However, we present two new upper bounds on the signless Laplacian which are not upper bounds for the Laplacian energy.  相似文献   

4.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

5.
The energy of a graph G is equal to the sum of the absolute values of the eigenvalues of G, which in turn is equal to the sum of the singular values of the adjacency matrix of G. Let X, Y, and Z be matrices, such that X+Y=Z. The Ky Fan theorem establishes an inequality between the sum of the singular values of Z and the sum of the sum of the singular values of X and Y. This theorem is applied in the theory of graph energy, resulting in several new inequalities, as well as new proofs of some earlier known inequalities.  相似文献   

6.
Let k be a natural number and let G be a graph with at least k vertices. Brouwer conjectured that the sum of the k largest Laplacian eigenvalues of G is at most , where e(G) is the number of edges of G. We prove this conjecture for k=2. We also show that if G is a tree, then the sum of the k largest Laplacian eigenvalues of G is at most e(G)+2k-1.  相似文献   

7.
The distance energy of a graph G is a recently developed energy-type invariant, defined as the sum of absolute values of the eigenvalues of the distance matrix of G. There was a vast research for the pairs and families of non-cospectral graphs having equal distance energy, and most of these constructions were based on the join of graphs. A graph is called circulant if it is Cayley graph on the circulant group, i.e. its adjacency matrix is circulant. A graph is called integral if all eigenvalues of its adjacency matrix are integers. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer. In this paper, we characterize the distance spectra of integral circulant graphs and prove that these graphs have integral eigenvalues of distance matrix D. Furthermore, we calculate the distance spectra and distance energy of unitary Cayley graphs. In conclusion, we present two families of pairs (G1,G2) of integral circulant graphs with equal distance energy - in the first family G1 is subgraph of G2, while in the second family the diameter of both graphs is three.  相似文献   

8.
The least eigenvalue of graphs with given connectivity   总被引:2,自引:0,他引:2  
Let G be a simple graph and A(G) be the adjacency matrix of G. The eigenvalues of G are those of A(G). In this paper, we characterize the graphs with the minimal least eigenvalue among all graphs of fixed order with given vertex connectivity or edge connectivity.  相似文献   

9.
Given an n-vertex graph G=(V,E), the Laplacian spectrum of G is the set of eigenvalues of the Laplacian matrix L=D-A, where D and A denote the diagonal matrix of vertex-degrees and the adjacency matrix of G, respectively. In this paper, we study the Laplacian spectrum of trees. More precisely, we find a new upper bound on the sum of the k largest Laplacian eigenvalues of every n-vertex tree, where k∈{1,…,n}. This result is used to establish that the n-vertex star has the highest Laplacian energy over all n-vertex trees, which answers affirmatively to a question raised by Radenkovi? and Gutman [10].  相似文献   

10.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

11.
In 1970s, Gutman introduced the concept of the energy E(G) for a simple graph G, which is defined as the sum of the absolute values of the eigenvalues of G. This graph invariant has attracted much attention, and many lower and upper bounds have been established for some classes of graphs among which bipartite graphs are of particular interest. But there are only a few graphs attaining the equalities of those bounds. We however obtain an exact estimate of the energy for almost all graphs by Wigner’s semi-circle law, which generalizes a result of Nikiforov. We further investigate the energy of random multipartite graphs by considering a generalization of Wigner matrix, and obtain some estimates of the energy for random multipartite graphs.  相似文献   

12.
The D-eigenvalues {μ1,μ2,…,…,μp} of a graph G are the eigenvalues of its distance matrix D and form the D-spectrum of G denoted by specD(G). The greatest D-eigenvalue is called the D-spectral radius of G denoted by μ1. The D-energy ED(G) of the graph G is the sum of the absolute values of its D-eigenvalues. In this paper we obtain some lower bounds for μ1 and characterize those graphs for which these bounds are best possible. We also obtain an upperbound for ED(G) and determine those maximal D-energy graphs.  相似文献   

13.
Let G be a graph with n vertices and m edges. Let λ1λ2, … , λn be the eigenvalues of the adjacency matrix of G, and let μ1μ2, … , μn be the eigenvalues of the Laplacian matrix of G. An earlier much studied quantity is the energy of the graph G. We now define and investigate the Laplacian energy as . There is a great deal of analogy between the properties of E(G) and LE(G), but also some significant differences.  相似文献   

14.
Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G). In [5], Cvetkovi? et al. have given the following conjecture involving the second largest signless Laplacian eigenvalue (q2) and the index (λ1) of graph G (see also Aouchiche and Hansen [1]):
  相似文献   

15.
Subgraphs and the Laplacian spectrum of a graph   总被引:1,自引:0,他引:1  
Let G be a graph and H a subgraph of G. In this paper, a set of pairwise independent subgraphs that are all isomorphic copies of H is called an H-matching. Denoting by ν(H,G) the cardinality of a maximum H-matching in G, we investigate some relations between ν(H,G) and the Laplacian spectrum of G.  相似文献   

16.
We consider the (Ihara) zeta functions of line graphs, middle graphs and total graphs of a regular graph and their (regular or irregular) covering graphs. Let L(G), M(G) and T(G) denote the line, middle and total graph of G, respectively. We show that the line, middle and total graph of a (regular and irregular, respectively) covering of a graph G is a (regular and irregular, respectively) covering of L(G), M(G) and T(G), respectively. For a regular graph G, we express the zeta functions of the line, middle and total graph of any (regular or irregular) covering of G in terms of the characteristic polynomial of the covering. Also, the complexities of the line, middle and total graph of any (regular or irregular) covering of G are computed. Furthermore, we discuss the L-functions of the line, middle and total graph of a regular graph G.  相似文献   

17.
Let G be a connected graph of order n. The algebraic connectivity of G is the second smallest eigenvalue of the Laplacian matrix of G. A dominating set in G is a vertex subset S such that each vertex of G that is not in S is adjacent to a vertex in S. The least cardinality of a dominating set is the domination number. In this paper, we prove a sharp upper bound on the algebraic connectivity of a connected graph in terms of the domination number and characterize the associated extremal graphs.  相似文献   

18.
The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let G(n,d) be the class of tricyclic graphs G on n vertices with diameter d and containing no vertex disjoint odd cycles Cp,Cq of lengths p and q with p+q2(mod4). In this paper, we characterize the graphs with minimal energy in G(n,d).  相似文献   

19.
Let G be a simple graph. Let λ1(G) and μ1(G) denote the largest eigenvalue of the adjacency matrix and the Laplacian matrix of G, respectively. Let Δ denote the largest vertex degree. If G has just one cycle, then
  相似文献   

20.
The signless Laplacian matrix of a graph G is defined to be the sum of its adjacency matrix and degree diagonal matrix, and its eigenvalues are called Q-eigenvalues of G. A Q-eigenvalue of a graph G is called a Q-main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this work, all trees, unicyclic graphs and bicyclic graphs with exactly two Q-main eigenvalues are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号