首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ming Zhou 《PAMM》2010,10(1):553-554
We consider preconditioned subspace iterations for the numerical solution of discretized elliptic eigenvalue problems. For these iterative solvers, the convergence theory is still an incomplete puzzle. We generalize some results from the classical convergence theory of inverse subspace iterations, as given by Parlett, and some recent results on the convergence of preconditioned vector iterations. To this end, we use a geometric cone representation and prove some new trigonometric inequalities for subspace angles and canonical angles. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Klaus Neymeyr 《PAMM》2011,11(1):749-750
Gradient iterations for the minimization of the Rayleigh quotient are robust and (with a proper preconditioning) fast iterations to compute approximations of the smallest eigenvalue of a self-adjoint elliptic partial differential operator. Up to now sharp convergence estimates were only known for the basic fixed-step size preconditioned gradient iteration (also called preconditioned inverse iteration). Recently sharp convergence estimates have been proved for optimal step size (preconditioned) gradient iterations. These new estimates are compared with previous results. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
For a class of block two-by-two systems of linear equations with certain skew-Hamiltonian coefficient matrices, we construct additive block diagonal preconditioning matrices and discuss the eigen-properties of the corresponding preconditioned matrices. The additive block diagonal preconditioners can be employed to accelerate the convergence rates of Krylov subspace iteration methods such as MINRES and GMRES. Numerical experiments show that MINRES preconditioned by the exact and the inexact additive block diagonal preconditioners are effective, robust and scalable solvers for the block two-by-two linear systems arising from the Galerkin finite-element discretizations of a class of distributed control problems.  相似文献   

4.
非Hermite线性方程组在科学和工程计算中有着重要的理论研究意义和使用价值,因此如何高效求解该类线性方程组,一直是研究者所探索的方向.通过提出一种预处理方法,对非Hermite线性方程组和具有多个右端项的复线性方程组求解的若干迭代算法进行预处理,旨在提高原算法的收敛速度.最后通过数值试验表明,所提出的若干预处理迭代算法与原算法相比较,预处理算法迭代次数大大降低,且收敛速度明显优于原算法.除此之外,广义共轭A-正交残量平方法(GCORS2)的预处理算法与其他算法相比,具有良好的收敛性行为和较好的稳定性.  相似文献   

5.
Marcel Krüger 《PAMM》2008,8(1):10817-10818
The objective is a comparative study of iterative solvers for eigenproblems arising from elliptic and self–adjoint partial differential operators. Typically only a few of the smallest eigenvalues of these problems are to be computed. We discuss various gradient based preconditioned eigensolvers which make use of algebraic multigrid preconditioning. We present some algorithms together with numerical results. Performance characteristics are derived by comparison with the solutions of standard problems. We show that known advantages of algebraic multigrid preconditioning (e.g. for boundary–value problems with large jumps in the coefficients) transfer to AMG–preconditioned eigensolvers. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Many researchers have used Oneshot optimization methods based on user-specified primal state iterations, the corresponding adjoint iterations, and appropriately preconditioned design steps. Our goal here is to develop heuristics for sequencing these three subtasks, in order to optimize the convergence rate of the resulting coupled iteration cycle. A key ingredient is the preconditioning in the design step by a BFGS approximation of the projected Hessian. We provide a hard bound on the spectral radius of the coupled iteration cycle at local minima satisfying second order sufficiency conditions. Finally, we show how certain problem specific parameters can be estimated by local samples and be used to steer the whole process adaptively. We present limited numerical results that confirm the theoretical analysis.  相似文献   

7.
Summary. We examine the convergence characteristics of iterative methods based on a new preconditioning operator for solving the linear systems arising from discretization and linearization of the steady-state Navier-Stokes equations. With a combination of analytic and empirical results, we study the effects of fundamental parameters on convergence. We demonstrate that the preconditioned problem has an eigenvalue distribution consisting of a tightly clustered set together with a small number of outliers. The structure of these distributions is independent of the discretization mesh size, but the cardinality of the set of outliers increases slowly as the viscosity becomes smaller. These characteristics are directly correlated with the convergence properties of iterative solvers. Received August 5, 2000 / Published online June 20, 2001  相似文献   

8.
We construct, analyze, and implement SSOR‐like preconditioners for non‐Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew‐Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR‐like iteration methods as well as the corresponding preconditioned GMRES iteration methods. Numerical implementations show that Krylov subspace iteration methods such as GMRES, when accelerated by the SSOR‐like preconditioners, are efficient solvers for these classes of non‐Hermitian positive definite linear systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
When solving large size systems of equations by preconditioned iterative solution methods, one normally uses a fixed preconditioner which may be defined by some eigenvalue information, such as in a Chebyshev iteration method. In many problems, however, it may be more effective to use variable preconditioners, in particular when the eigenvalue information is not available. In the present paper, a recursive way of constructing variable-step of, in general, nonlinear multilevel preconditioners for selfadjoint and coercive second-order elliptic problems, discretized by the finite element method is proposed. The preconditioner is constructed recursively from the coarsest to finer and finer levels. Each preconditioning step requires only block-diagonal solvers at all levels except at every k0, k0 ≥ 1 level where we perform a sufficient number ν, ν ≥ 1 of GCG-type variable-step iterations that involve the use again of a variable-step preconditioning for that level. It turns out that for any sufficiently large value of k0 and, asymptotically, for ν sufficiently large, but not too large, the method has both an optimal rate of convergence and an optimal order of computational complexity, both for two and three space dimensional problem domains. The method requires no parameter estimates and the convergence results do not depend on the regularity of the elliptic problem.  相似文献   

10.
A Helmholtz equation in two dimensions discretized by a second order finite difference scheme is considered. Krylov methods such as Bi-CGSTAB and IDR(s) have been chosen as solvers. Since the convergence of the Krylov solvers deteriorates with increasing wave number, a shifted Laplace multigrid preconditioner is used to improve the convergence. The implementation of the preconditioned solver on CPU (Central Processing Unit) is compared to an implementation on GPU (Graphics Processing Units or graphics card) using CUDA (Compute Unified Device Architecture). The results show that preconditioned Bi-CGSTAB on GPU as well as preconditioned IDR(s) on GPU is about 30 times faster than on CPU for the same stopping criterion.  相似文献   

11.
C. Vuik  J.M. Tang  R. Nabben 《PAMM》2007,7(1):1020303-1020304
In many applications it appears that the initial convergence of preconditioned Krylov solvers is slow. The reason for this is that a number of small eigenvalues are present. After these bad eigenvector components are approximated, the fast superlinear convergence sets in. A way to have fast convergence from the start is to remove these components by a projection. In this paper we give a comparison of some of these projection operators. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present a parallel preconditioned iterative solver for large sparse symmetric positive definite linear systems. The preconditioner is constructed as a proper combination of advanced preconditioning strategies. It can be formally seen as being of domain decomposition type with algebraically constructed overlap. Similar to the classical domain decomposition technique, inexact subdomain solvers are used, based on incomplete Cholesky factorization. The proper preconditioner is shown to be near optimal in minimizing the so‐called K‐condition number of the preconditioned matrix. The efficiency of both serial and parallel versions of the solution method is illustrated on a set of benchmark problems in linear elasticity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
We consider the numerical solution of linear systems arising from the discretization of the electric field integral equation (EFIE). For some geometries the associated matrix can be poorly conditioned making the use of a preconditioner mandatory to obtain convergence. The electromagnetic scattering problem is here solved by means of a preconditioned GMRES in the context of the multilevel fast multipole method (MLFMM). The novelty of this work is the construction of an approximate hierarchically semiseparable (HSS) representation of the near-field matrix, the part of the matrix capturing interactions among nearby groups in the MLFMM, as preconditioner for the GMRES iterations. As experience shows, the efficiency of an ILU preconditioning for such systems essentially depends on a sufficient fill-in, which apparently sacrifices the sparsity of the near-field matrix. In the light of this experience we propose a multilevel near-field matrix and its corresponding HSS representation as a hierarchical preconditioner in order to substantially reduce the number of iterations in the solution of the resulting system of equations.  相似文献   

14.
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of practical and efficient structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to efficient and high-quality preconditioning matrices for some typical matrices from the real-world applications.

  相似文献   


15.
This paper introduces and presents theoretical analyses of constraint preconditioning via a Schilders'‐like factorization for nonsymmetric saddle‐point problems. We extend the Schilders' factorization of a constraint preconditioner to a nonsymmetric matrix by using a different factorization. The eigenvalue and eigenvector distributions of the preconditioned matrix are determined. The choices of the parameter matrices in the extended Schilders' factorization and the implementation of the preconditioning step are discussed. An upper bound on the degree of the minimum polynomial for the preconditioned matrix and the dimension of the corresponding Krylov subspace are determined, as well as the convergence behavior of a Krylov subspace method such as GMRES. Numerical experiments are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This paper deals with the solution of nonlinear programming problems arising from elliptic control problems by an interior point scheme. At each step of the scheme, we have to solve a large scale symmetric and indefinite system; inner iterative solvers, with an adaptive stopping rule, can be used in order to avoid unnecessary inner iterations, especially when the current outer iterate is far from the solution. In this work, we analyse the method of multipliers and the preconditioned conjugate gradient method as inner solvers for interior point schemes. We discuss the convergence of the whole approach, the implementation details and report the results of numerical experimentation on a set of large scale test problems arising from the discretization of elliptic control problems. A comparison with other interior point codes is also reported. This research was supported by the Italian Ministry for Education, University and Research (MIUR) projects: FIRB Project: “Parallel Nonlinear Numerical Optimization PN 2 O” (grant n. RBAU01JYPN, ) and COFIN/PRIN04 Project “Numerical Methods and Mathematical Software for Applications” (grant n. 2004012559, ).  相似文献   

17.
Gradient-type iterative methods for solving Hermitian eigenvalue problems can be accelerated by using preconditioning and deflation techniques. A preconditioned steepest descent iteration with implicit deflation (PSD-id) is one of such methods. The convergence behavior of the PSD-id is recently investigated based on the pioneering work of Samokish on the preconditioned steepest descent method (PSD). The resulting non-asymptotic estimates indicate a superlinear convergence of the PSD-id under strong assumptions on the initial guess. The present paper utilizes an alternative convergence analysis of the PSD by Neymeyr under much weaker assumptions. We embed Neymeyr's approach into the analysis of the PSD-id using a restricted formulation of the PSD-id. More importantly, we extend the new convergence analysis of the PSD-id to a practically preferred block version of the PSD-id, or BPSD-id, and show the cluster robustness of the BPSD-id. Numerical examples are provided to validate the theoretical estimates.  相似文献   

18.
In this paper, we consider inexact Newton and Newton-like methods andprovide new convergence conditions relating the forcing terms to theconditioning of the iteration matrices. These results can be exploited wheninexact methods with iterative linear solvers are used. In this framework,preconditioning techniques can be used to improve the performance ofiterative linear solvers and to avoid the need of excessively small forcingterms. Numerical experiments validating the theoretical results arediscussed.  相似文献   

19.
In this paper, we present the preconditioned generalized accelerated overrelaxation (GAOR) method for solving linear systems based on a class of weighted linear least square problems. Two kinds of preconditioning are proposed, and each one contains three preconditioners. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the convergence rate of the preconditioned GAOR methods is indeed better than the rate of the original method, whenever the original method is convergent. Finally, a numerical example is presented in order to confirm these theoretical results.  相似文献   

20.
We propose the damped inexact Newton method, coupled with preconditioned inner iterations, to solve the finite element discretization of a class of nonlinear elliptic interface problems. The linearized equations are solved by a preconditioned conjugate gradient method. Both the inner and outer iterations exhibit mesh independent superlinear convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号