首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We describe phenomena of colloidal particle transport and separation inside single microdroplets of water floating on the surface of dense fluorinated oil. The experiments were performed on microfluidic chips, where single droplets were manipulated with alternating electric fields applied to arrays of electrodes below the oil. The particles suspended in the droplets were collected in their top region during the evaporation process. Experimental results and numerical simulations show that this microsepration occurs as a result of a series of processes driven by mass and heat transfer. An interfacial tension gradient develops on the surface of the droplet as a result of the nonuniform temperature distribution during the evaporation. This gradient generates an internal convective Marangoni flow. The colloidal particles transported by the flow are collected in the top of the droplets by the hydrodynamic flux, compensating for evaporation through the exposed top surface. The internal flow pattern and temperature distribution within evaporating droplets were simulated using finite element calculations. The results of the simulation were consistent with experiments using tracer particles. Such microseparation processes can be used for on-chip synthesis of advanced particles and innovative microbioassays.  相似文献   

2.
流体在微流通道中形成剪切流场(低雷诺数).不同于宏观体系,由于剪切力和表面张力的竞争作用,产生的液滴在微尺度下的微流通道中形成特殊的排列现象---周期性类似“晶格”排列现象.设计了新型流动聚焦型微流控芯片,分析研究在微流体系中液滴周期性图案化排列和转变机理性,液滴排列模式受两方面因素影响:水油两相的流速比值和微通道尺寸.当微通道宽度为250或300 μm时,液滴形成单层分散,双层和单层挤压排列.当微通道宽度为350 μm 时,液滴会形成单层分散到三层排列到双层挤压最后到单层挤压排列.当出口通道宽度增加到400 μm时,甚至出现了液滴四层排列的现象.同时研究了各个液滴排列模式的“转变点”.  相似文献   

3.
We have developed a microfluidic device operating at a planar surface instead of a closed channel network. The fluid is transported in single droplets using surface acoustic waves (SAW) on a piezoelectric LiNbO(3) substrate. The surface of the piezo is chemically structured to induce high contact angles of the droplets or enclose areas where the liquid can wet the substrate. Combining the SAW technique with thin film resistance heaters, a biological analysis chip with integrated DNA amplification by PCR and hybridization was designed. To prevent evaporation of the PCR reagents at high temperatures the sample is enclosed in droplets of mineral oil. On this chip the SAW resolves dried primers, shifts the oil capped liquid between the two heaters and mixes during hybridization. The chip is able to perform a highly sensitive, fast and specific PCR with a volume as low as 200 nl. During the temperature cycles an online monitoring of the DNA concentration is feasible with an optical unit, providing a sensitivity of 0.1 ng. After PCR the product is moved to the second heater for the hybridization on a spotted DNA array. With our chip we were able to detect a single nucleotide polymorphism (SNP) responsible for the Leiden Factor V syndrome from human blood.  相似文献   

4.
This paper presents a droplet-based microfluidic platform for miniaturized combinatorial synthesis. As a proof of concept, a library of small molecules for early stage drug screening was produced. We present an efficient strategy for producing a 7 × 3 library of potential thrombin inhibitors that can be utilized for other combinatorial synthesis applications. Picolitre droplets containing the first type of reagent (reagents A(1), A(2), …, A(m)) were formed individually in identical microfluidic chips and then stored off chip with the aid of stabilizing surfactants. These droplets were then mixed to form a library of droplets containing reagents A(1-m), each individually compartmentalized, which was reinjected into a second microfluidic chip and combinatorially fused with picolitre droplets containing the second reagent (reagents B(1), B(2), …, B(n)) that were formed on chip. The concept was demonstrated with a three-component Ugi-type reaction involving an amine (reagents A(1-3)), an aldehyde (reagents B(1-7)), and an isocyanide (held constant), to synthesize a library of small molecules with potential thrombin inhibitory activity. Our technique produced 10(6) droplets of each reaction at a rate of 2.3 kHz. Each droplet had a reaction volume of 3.1 pL, at least six orders of magnitude lower than conventional techniques. The droplets can then be divided into aliquots for different downstream screening applications. In addition to medicinal chemistry applications, this combinatorial droplet-based approach holds great potential for other applications that involve sampling large areas of chemical parameter space with minimal reagent consumption; such an approach could be beneficial when optimizing reaction conditions or performing combinatorial reactions aimed at producing novel materials.  相似文献   

5.
Poly(dimethylsiloxane) (PDMS) and similar polymers have proved to be of widespread interest for use in microfluidic and similar microanalytical devices. Surface modification of PDMS is required to extend the range of applications for devices made of this polymer, however. Here we report on the grafting of perfluorooctyltriethoxysilane via hydrolysis onto an oxidized PDMS substrate in order to form a fluorinated microchannel. Such a fluorinated device could be used for separating fluorous tagged proteins or peptides, similar to that which has been recently demonstrated in a capillary electrophoresis system or in an open tubular capillary column. The modified polymer is characterized using chemical force titrations, contact angle measurements, and X-ray photoelectron spectroscopy (XPS). We also report on a novel means of performing electroosmotic measurements on this material to determine the surface zeta potential. As might be expected, contact angle and chemical force titration measurements indicate the fluorinated surface to be highly hydrophobic. XPS indicates that fluorocarbon groups segregate to the surface of the polymer over a period of days following the initial surface modification, presumably driven by a lower surface free energy. One of the most interesting results is the zeta potential measurements, which show that significant surface charge can be maintained across a wide range of pH on this modified polymer, sufficient to promote electroosmotic flow in a microfluidic chip. Matrix-assisted time-of-flight mass spectrometry (MALDI-TOF MS) measurements show that a fluorous-tagged peptide will selectively adsorb on the fluorinated PDMS in aqueous solution, demonstrating that the fluorinated polymer could be used in devices designed for the enrichment or enhanced detection of fluorous-labeled proteins and peptides.  相似文献   

6.
H Ding  S Sadeghi  GJ Shah  S Chen  PY Keng  CJ Kim  RM van Dam 《Lab on a chip》2012,12(18):3331-3340
Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e. have contact angles of <90° even on the highly hydrophobic surfaces (e.g., Teflon? or Cytop?) typically used on digital microfluidic chips. Furthermore, often the applications dictate that the processes are performed in a gas environment, not allowing the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes of liquid to the chip. An automated, simple, accurate and reliable method of delivering reagents from sealed, off-chip reservoirs is presented here. This platform overcomes the issues of evaporative losses of volatile solvents, cross-contamination, and flooding of the chip by combining a syringe pump, a simple on-chip liquid detector and a robust interface design. The impedance-based liquid detection requires only minimal added hardware to provide a feedback signal to ensure accurate volumes of volatile solvents are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing of multiple droplets of acetonitrile, a frequently used but difficult to handle solvent due to its wetting properties and volatility, was demonstrated and used to synthesize the positron emission tomography (PET) probe [(18)F]FDG reliably.  相似文献   

7.
We present an integrated circuit/microfluidic chip that traps and moves individual living biological cells and chemical droplets along programmable paths using dielectrophoresis (DEP). Our chip combines the biocompatibility of microfluidics with the programmability and complexity of integrated circuits (ICs). The chip is capable of simultaneously and independently controlling the location of thousands of dielectric objects, such as cells and chemical droplets. The chip consists of an array of 128 x 256 pixels, 11 x 11 microm(2) in size, controlled by built-in SRAM memory; each pixel can be energized by a radio frequency (RF) voltage of up to 5 V(pp). The IC was built in a commercial foundry and the microfluidic chamber was fabricated on its top surface at Harvard. Using this hybrid chip, we have moved yeast and mammalian cells through a microfluidic chamber at speeds up to 30 microm sec(-1). Thousands of cells can be individually trapped and simultaneously positioned in controlled patterns. The chip can trap and move pL droplets of water in oil, split one droplet into two, and mix two droplets into one. Our IC/microfluidic chip provides a versatile platform to trap and move large numbers of cells and fluid droplets individually for lab-on-a-chip applications.  相似文献   

8.
The application of silicon mold inserts by micro‐hot embossing molding has been explored in microfluidic chip fabrication. For the mold insert, this study employed an SU‐8 photoresist to coat the silicon wafer. Ultraviolet light was then used to expose the pattern on the SU‐8 photoresist surface. This study replicates the microstructure of the silicon mold insert by micro‐hot embossing molding. Different processing parameters (embossing temperature, embossing pressure, embossing time, and de‐molding temperature) for the cycle‐olefin polymer (COP) film of microfluidic chips are evaluated. The results showed that the most important parameter for replication of molded microfluidic chip is embossing temperature. De‐molding temperature is the most important parameter for surface roughness of the molded microfluidic chip. The microchannel is bonded with a cover by thermal bonding processing to form the sealed microfluidic chip. The bonding temperature is the most important factor in the bonding strength of the sealed microfluidic chip. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This study develops an improved method for generating aluminum mold inserts used in the replication of polymer‐based microfluidic chip. Since molding masters that are suitable for microfluidic chip replication must have features whose dimensions are of the order of tens to hundreds of microns, micro electrical discharge machining is employed herein to fabricate an aluminum mold insert of a microfluidic chip. The width and depth of the aluminum mold insert for the microfluidic chip are 61.50 and 49.61 µm, respectively. The surface roughness values of the microchannel and the sample reservoir in aluminum mold insert for the microfluidic chip are 53.9 and 34.3 nm, respectively. PMMA material is adopted as the molded microfluidic chip that is produced by micro‐hot embossing molding. The PMMA material can replicate the microchannel and sample reservoir very well when the aluminum mold insert is used in micro‐hot embossing molding. The results indicate that the most important parameter in the replication of molded microfluidic chip is the embossing pressure, which is also the most important parameter in determining the surface roughness of the molded microfluidic chip. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This work depicts the original combination of electrochemiluminescence (ECL) and bipolar electrochemistry (BPE) to map in real-time the oxidation of silicon in microchannels. We fabricated model silicon-PDMS microfluidic chips, optionally containing a restriction, and monitored the evolution of the surface reactivity using ECL. BPE was used to remotely promote ECL at the silicon surface inside microfluidic channels. The effects of the fluidic design, the applied potential and the resistance of the channel (controlled by the fluidic configuration) on the silicon polarization and oxide formation were investigated. A potential difference down to 6 V was sufficient to induce ECL, which is two orders of magnitude less than in classical BPE configurations. Increasing the resistance of the channel led to an increase in the current passing through the silicon and boosted the intensity of ECL signals. Finally, the possibility of achieving electrochemical reactions at predetermined locations on the microfluidic chip was investigated using a patterning of the silicon oxide surface by etched micrometric squares. This ECL imaging approach opens exciting perspectives for the precise understanding and implementation of electrochemical functionalization on passivating materials. In addition, it may help the development and the design of fully integrated microfluidic biochips paving the way for development of original bioanalytical applications.  相似文献   

11.
In this paper we report on the controlled biofunctionalization of the hydrophobic layer of electrowetting-on-dielectric (EWOD) based microfluidic chips with the aim to execute (adherent) cell-based assays. The biofunctionalization technique involves a dry lift-off method with an easy to remove Parylene-C mask and allows the creation of spatially controlled micropatches of biomolecules in the Teflon-AF(?) layer of the chip. Compared to conventional methods, this method (i) is fully biocompatible; and (ii) leaves the hydrophobicity of the chip surface unaffected by the fabrication process, which is a crucial feature for digital microfluidic chips. In addition, full control of the geometry and the dimensions of the micropatches is achieved, allowing cells to be arrayed as cell clusters or as single cells on the digital microfluidic chip surface. The dry Parylene-C lift-off technique proves to have great potential for precise biofunctionalization of digital microfluidic chips, and can enhance their use for heterogeneous bio-assays that are of interest in various biomedical applications.  相似文献   

12.
Joule heating is an inevitable phenomenon for microfluidic chips involving electrokinetic pumping, and it becomes a more important issue when chips are made of polymeric materials because of their low thermal conductivities. Therefore, it is very important to develop methods for evaluating Joule heating effects in microfluidic chips in a relatively easy manner. To this end, two analytical models have been established and solved using the Green's function for evaluating Joule heating effects on the temperature distribution in a microfluidic-based PCR chip. The first simplified model focuses on the understanding of Joule heating effects by ignoring the influences of the boundary conditions. The second model aims to consider practical experimental conditions. The analytical solutions to the two models are particularly useful in providing guidance for microfluidic chip design and operation prior to expensive chip fabrication and characterization. To validate the analytical solutions, a 3-D numerical model has also been developed and the simultaneous solution to this model allows the temperature distribution in a microfluidic PCR chip to be obtained, which is used to compare with the analytical results. The developed numerical model has been applied for parametric studies of Joule heating effects on the temperature control of microfluidic chips.  相似文献   

13.
The possibility of using the sol-gel method for preparation of inorganic ion-exchangers with a silica gel matrix has been demonstrated on the ammonium molybdophosphate-silica gel (AMP-SG) system. For the preparation of the ion-exchanger a sodium silicate solution, containing AMP and components to cause gelling to silica gel after increase of the temperature of the solution, is poured into a hot stirred silicone oil. The solution forms droplets, which are filtered off after their gelling, washed and dried. Beads containing 65 wt.% of AMP per gram of dry material have been prepared by this method and tested in ion-exchange columns for caesium removal from nitric acid solutions. Caesium may easily be desorbed with ammonium chloride or nitrate solutions. The ion-exchanger is suitable for long-time reversible column operation, having not only good chemical, thermal and radiation stabilities but also good mechanical and hydrodynamic properties and resistance to abrasion. It combines the advantage of the good kinetics of ion-exchange obtained with microparticles of precipitated inorganic ion-exchanger, with the low flow resistance of large particles.  相似文献   

14.
Polystyrene (PS), a standard material for cell culture consumable labware, was molded into microstructures with high fidelity of replication by an elastomeric polydimethylsiloxane (PDMS) mold. The process was a simple, benchtop method based on soft lithography using readily available materials. The key to successful replica molding by this simple procedure relies on the use of a solvent, for example, gamma-butyrolactone, which dissolves PS without swelling the PDMS mold. PS solution was added to the PDMS mold, and evaporation of the solvent was accomplished by baking the mold on a hotplate. Microstructures with feature sizes as small as 3 μm and aspect ratios as large as 7 were readily molded. Prototypes of microfluidic chips made from PS were prepared by thermal bonding of a microchannel molded in PS with a flat PS substrate. The PS microfluidic chip displayed much lower adsorption and absorption of hydrophobic molecules (e.g. rhodamine B) compared to a comparable chip created from PDMS. The molded PS surface exhibited stable surface properties after plasma oxidation as assessed by contact angle measurement. The molded, oxidized PS surface remained an excellent surface for cell culture based on cell adhesion and proliferation. To demonstrate the application of this process for cell biology research, PS was micromolded into two different microarray formats, microwells and microposts, for segregation and tracking of non-adherent and adherent cells, respectively. The micromolded PS possessed properties that were ideal for biological and bioanalytical needs, thus making it an alternative material to PDMS and suitable for building lab-on-a-chip devices by soft lithography methods.  相似文献   

15.
We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed microfluidic chips are used for the identification of the antibiotic resistance gene mecA in Staphylococcus epidermidis. R2R hot embossing is an emerging manufacturing technology for polymer microfluidic devices. It is based on continuous feeding of a thermoplastic foil through a pressurized area between a heated embossing cylinder and a blank counter cylinder. Although mass fabrication of foil-based microfluidic chips and their use for biological applications were foreseen already some years ago, no such studies have been published previously.  相似文献   

16.
Chen Y  Zhang L  Chen G 《Electrophoresis》2008,29(9):1801-1814
Poly(methyl methacrylate) (PMMA) is particularly useful for microfluidic chips with the features of low price, excellent optic transparency, attractive mechanical and chemical properties, ease of fabrication and modification, biocompatibility, etc. During the past decade, significant progress in the PMMA microfluidic chips has occurred. This review, which contains 120 references, summarizes the recent advances and the key strategies in the fabrication, modification, and application of PMMA microfluidic chips. It is expected that PMMA microchips should find a wide range of applications and will lead to the creation of truly disposable microfluidic devices.  相似文献   

17.
近年来,微流控纸芯片由于低成本、便携化、检测快等优点,在需要快速检测的环境分析领域中展现出了巨大的应用前景。该综述从微流控纸芯片在环境分析中的应用角度,总结归纳了微流控纸芯片在环境分析中的最新研究进展,并展望了其在未来的发展趋势与挑战。论文内容引用150余篇源于科学引文索引(SCI)与中文核心期刊中的相关论文。该综述包括微流控纸芯片在环境检测中的优势与制造方法介绍;电化学法、荧光法、比色法、表面增强拉曼法、集成传感法等基于纸芯片的先进分析方法介绍;根据环境分析目标物种类,如重金属离子、营养盐、农药、微生物、抗生素以及其他污染物等,对纸芯片的最新应用现状进行了举例评述;基于微流控纸芯片的环境分析研究的未来发展趋势和前景展望。通过综述近期相关研究,表明微流控纸芯片从提出至今虽然只有十几年的发展历程,但其在环境分析研究中的发展却十分迅速。微流控纸芯片可以根据不同的环境条件和检测要求灵活选择制作与分析方法,实现最佳的检测效果。但是微流控纸芯片也面临一些挑战,如纸张机械强度不足、流体控制程度不佳等问题。这些问题指出了微流控纸芯片在环境检测领域的发展趋势,相信随着不断深入的研究,纸芯片将会在未来的环境分析中发挥更大作用。  相似文献   

18.
T Nisisako  T Ando  T Hatsuzawa 《Lab on a chip》2012,12(18):3426-3435
This study describes a microfluidic platform with coaxial annular world-to-chip interfaces for high-throughput production of single and compound emulsion droplets, having controlled sizes and internal compositions. The production module consists of two distinct elements: a planar square chip on which many copies of a microfluidic droplet generator (MFDG) are arranged circularly, and a cubic supporting module with coaxial annular channels for supplying fluids evenly to the inlets of the mounted chip, assembled from blocks with cylinders and holes. Three-dimensional flow was simulated to evaluate the distribution of flow velocity in the coaxial multiple annular channels. By coupling a 1.5 cm × 1.5 cm microfluidic chip with parallelized 144 MFDGs and a supporting module with two annular channels, for example, we could produce simple oil-in-water (O/W) emulsion droplets having a mean diameter of 90.7 μm and a coefficient of variation (CV) of 2.2% at a throughput of 180.0 mL h(-1). Furthermore, we successfully demonstrated high-throughput production of Janus droplets, double emulsions and triple emulsions, by coupling 1.5 cm × 1.5 cm - 4.5 cm × 4.5 cm microfluidic chips with parallelized 32-128 MFDGs of various geometries and supporting modules with 3-4 annular channels.  相似文献   

19.
Cheng JY  Hsieh CJ  Chuang YC  Hsieh JR 《The Analyst》2005,130(6):931-940
This study develops a novel temperature cycling strategy for executing temperature cycling reactions in laser-etched poly(methylmethacrylate) (PMMA) microfluidic chips. The developed microfluidic chip is circular in shape and is clamped in contact with a circular ITO heater chip of an equivalent diameter. Both chips are fabricated using an economic and versatile laser scribing process. Using this arrangement, a self-sustained radial temperature gradient is generated within the microfluidic chip without the need to thermally isolate the different temperature zones. This study demonstrates the temperature cycling capabilities of the reported microfluidic device by a polymerase chain reaction (PCR) process using ribulose 1,5-bisphosphate carboxylase large subunit (rbcL) gene as a template. The temperature ramping rate of the sample inside the microchannel is determined from the spectral change of a thermochromic liquid crystal (TLC) solution pumped into the channel. The present results confirm that a rapid thermal cycling effect is achieved despite the low thermal conductivity of the PMMA substrate. Using IR thermometry, it is found that the radial temperature gradient of the chip is approximately 2 degrees C mm(-1). The simple system presented in this study has considerable potential for miniaturizing complex integrated reactions requiring different cycling parameters.  相似文献   

20.
Herein, we describe the preparation and characterization of a material suitable for the fabrication of microfluidic devices. The material is a silicone acrylic polymer, obtained by photopolymerization. It is polymerase chain reaction (PCR) compatible, resistant to temperature, optically transparent, and dimensionally stable; it has a better water and solvent resistance if compared with polydimethylsiloxane. Production of microfluidic layouts is successfully tested: a simple photolithographic approach allows to accurately control the pattern transfer and to produce PCR compatible microfluidic devices. The polymer characterization suggests that the proposed material satisfies all the characteristics required for an ideal PCR chip, without further treatment. Moreover, the possibility for fast, accurate, and cheap reproducibility of microdevices by liquid phase photopolymerization increases the polymer attractiveness. The material is a good alternative with respect to polydimethylsiloxane for the fabrication of microfluidic chips for biological analysis purposes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号