首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we report the dielectric properties of composite systems (nanodielectrics) made of small amounts of mono dispersed magnetic nanoparticles embedded in a polymer matrix. It is observed from the transmission electron microscope images that the matrix polymeric material is confined in approximately 100 nm size cages between particle clusters. The particle clusters are composed of separated spherical particles which comprise unconnected networks in the matrix. The dielectric relaxation and breakdown characteristics of the matrix polymeric material are altered with the addition of nanometer size cobalt iron-oxide particles. The dielectric breakdown measurements performed at 77 K showed that these nanodielectrics are potentially useful as an electrical insulation material for cryogenic high voltage applications. Finally, structural and dielectric properties of nanocomposite dielectrics are discussed to present plausible reasons for the observed low effective dielectric permittivity values in the present and similar nanodielectric systems. It is concluded that polymeric nanoparticle composites would have low dielectric permittivity regardless of the permittivity of nanoparticles are when the particles are coordinated with a low dielectric permittivity surfactant.  相似文献   

2.
In this paper, we report the preparation of highly stable gold nanoparticles/poly(3,4-ethylendioxythiophene) nanocomposites by a one-pot chemical route in aqueous medium without surfactants to increase the solubility of the monomer (3,4-ethylendioxythiophene, EDOT) or to stabilize gold nanoparticles (Au NPs). The generation of the nanocomposite was followed by UV–Visible transmission spectroscopy combined with multivariate curve resolution alternating least squares analysis to deconvolute the individual spectra of the different species generated in the synthesis: oligomers, polymer and gold nanoparticles. The plasmon band observed at 530 nm during the synthesis step indicates the generation of gold nanoparticles. The influence of monomer and metal precursor concentration and their concentration ratios on Au NP size were analyzed. The electrochromic properties of the composite were investigated by UV–Visible absorption spectroelectrochemistry, being mainly related to polymer oxidation and reduction. The main difference observed is the hypsochromic shift of the polymer spectra due to the gold nanoparticles inside the polymer. Multicyclic spectroelectrochemical experiments evidence a high stability and adhesion of the nanocomposite.  相似文献   

3.
The effect of iron oxide nanoparticle addition on the physicochemical properties of the polypyrrole (PPy) was investigated. In the presence of iron oxide nanoparticles, PPy was observed in the form of discrete nanoparticles, not the usual network structure. PPy showed crystalline structure in the nanocomposites and pure PPy formed without iron oxide nanoparticles. PPy exhibited amorphous structure and nanoparticles were completely etched away in the nanocomposites formed with mechanical stirring over a 7-h reaction. The thermal stability of the PPy in the nanocomposites was enhanced under the thermo-gravimetric analysis (TGA). The electrical conductivity of the nanocomposites increased greatly upon the initial addition (20 wt%) of iron oxide nanoparticles. However, a higher nanoparticle loading (50 wt%) decreased the conductivity as a result of the dominance of the insulating iron oxide nanoparticles. Standard four-probe measurements indicated a three-dimensional variable-range-hopping conductivity mechanism. The magnetic properties of the fabricated nanocomposites were dependent on the particle loading. Ultrasonic stirring was observed to have a favorable effect on the protection of iron oxide nanoparticles from dissolution in acid. A tight polymer structure surrounds the magnetic nanoparticles, as compared to a complete loss of the magnetic iron oxide nanoparticles during conventional mechanical stirring for the micron-sized iron oxide particles filled PPy composite fabrication.  相似文献   

4.
CdS and Si semiconductor nanopraticles were embedded in a polymer matrix and characterized using various techniques. The surface properties and size distribution of the nanoparticles were monitored by POM and SEM and found to be uniform but around the crystalline frameworks of the polymer. XRD and FTIR analysis have been used to ensure the composite nature and particle size of the semiconductor loaded films. The electrical conductivity of these films were evaluated and found to increase with semiconductor dispersion and attains a percolation threshold at optimum composition. This composition and the distribution of the clusters is shown to vary with the type of the semiconductor, i.e., CdS or Si.  相似文献   

5.
The optical and electrical properties of light-emitting diode structures with an active layer based on nanocomposite polyvinylcarbazole (PVK) films doped with nanoparticles of another light-emitting polymer, MEH-PPV, have been studied. It has been established that the size of MEH-PPV particles in the PVK matrix is of the order of 100 nm. The spectral range of photoluminescence of such structures can be changed by varying the ratio of PVK to MEH-PPV. The current-voltage characteristics of composite light-emitting diodes based on PVK: MEH-PPV films indicate p-type conductivity. It has been shown that a decrease in the MEH-PPV nanoparticle concentration in the PVK matrix shifts the threshold values of the bias for the onset of electroluminescence toward smaller values and makes the photoluminescence and electroluminescence spectra more similar to the spectrum of the white light-emitting diode. The influence of the form of the polymer and polymer nanoparticles on the mechanisms of injection and transport of charge carriers and the radiative recombination in the studied structures has been discussed.  相似文献   

6.
A facile synthesis route is described for the preparation of a poly-(o-aminophenol)-gold nanoparticle composite material by polymerization of o-aminophenol (AP) monomer using HAuCl4 as the oxidant. The synthesis was carried out in a methanol medium so that it could serve a dual solvent role, a solvent for both the AP and the water solution of HAuCl4. It was found that oxidative polymerization of AP leads to the formation of poly-AP with a diameter of 50±10nm, while the reduction of AuCl4 - results in the formation of gold nanoparticles (∼ 2nm). The gold nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer composite material. The resultant composite material was characterized by means of different techniques, such as UV-vis, IR and Raman spectroscopy, which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the composite material and the distribution of the metal particles in the composite material.  相似文献   

7.
Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.  相似文献   

8.
Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material that is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe2O3) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (<100 nm) and can be crosslinked to form a flexible magnetic material, which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 to 50 wt% without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings.  相似文献   

9.
With the advantage of continuous production of pure carbon nanotubes (CNTs), a new simple aerosol process for the formation of CNTs was developed. A combination of conventional spray pyrolysis and thermal chemical vapor deposition enabled the formation unusual sea-urchin-like carbon nanostructures composed of multi-walled CNTs and metal composite nanoparticles. The CNTs formed were relatively untangled and uniform with a diameter of less than ~10 nm. The key to the formation of CNTs in this way was to create a substrate particle containing both a catalytic and non-catalytic component, which prevented coking. The density of the CNTs grown on the spherical metal nanoparticles could be controlled by perturbing the density of the metal catalysts (Fe) in the host non-catalytic metal particle matrix (Al). Mobility size measurement was identified as a useful technique to real-time characterization of either the catalytic formation of thin carbon layer or CNTs on the surface of the metal aerosol. These materials have shown unique properties in enhancing the thermal conductivity of fluids. Other potential advantages are that the as-produced material can be manipulated easily without the concern of high mobility of conventional nanowires, and then subsequently released at the desired time in an unagglomerated state.  相似文献   

10.
磁性聚苯胺纳米微球的合成与表征   总被引:20,自引:0,他引:20       下载免费PDF全文
报道了具有核壳结构的Fe3 O4 聚苯胺磁性纳米微球的合成方法和表征结果 .微球同时具有导电性和磁性能 .在优化的实验条件下 ,可得到饱和磁化强度Ms 为 5 5 .4emu/g ,矫顽力Hc 为 6 2Oe的磁性微球 .微球的导电性随着微球中Fe含量的增加而下降 .微球的磁性能则随着Fe含量的增加而增大 .Fe3 O4 磁流体的粒径和磁性聚苯胺微球的粒径均在纳米量级 .纳米Fe3 O4 粒子能够提高复合物的热性能 .实验表明 ,磁流体和聚苯胺之间可能存在着一定的相互作用 ,但这种相互作用较为复杂 ,难于研究 .  相似文献   

11.
《Composite Interfaces》2013,20(2-3):137-141
We have prepared nanocomposites containing large amounts of superparamagnetic nanoparticles dispersed in a polymethyl methacrylate matrix. The preparation was divided into three steps. In the first step, maghemite nanoparticles were synthesized using coprecipitation from aqueous solutions, followed by coating with oleic acid (OA). In the second step, the OA-coated nanoparticles were dispersed in n-decane to prepare a stable, concentrated suspension. Finally, methyl methacrylate was added to the suspension and in situ polymerization was carried out at elevated temperatures. The content of nanoparticles was controlled by varying the nanoparticles/monomer ratio. The main focus was on controlling the nanocomposite's homogeneity. The nanocomposites were characterized using X-ray powder diffractometry, TEM, SEM, thermogravimetry, FT-IR, NMR and magnetic measurements. The TEM analysis showed that the nanoparticles were well dispersed in the polymer matrix. They retained their superparamagnetic nature even when encapsulated by polymer with concentrations up to 48 wt%. The high loading of magnetic nanoparticles resulted in relatively high saturation magnetizations of the nanocomposites, up to 31 emu/g.  相似文献   

12.
Conducting polymer composites of polypyrrole (PPy) and silver doped nickel oxide (Ag-NiO) nanocomposites were synthesised by in situ polymerisation of pyrrole with different contents of Ag-NiO nanoparticles. The formation of nanocomposites were studied by Fourier transform infrared (FTIR) and UV–vis spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and AC and DC conductivity measurements. The sensitivity of ammonia gas through the nanocomposite was analysed with respect to different contents of nanoparticles. Spectroscopic studies showed the shift in the absorption bands of polymer nanocomposite than that of pure PPy indicating the strong interaction between the nanoparticles and polymer chain. FESEM revealed the uniform dispersion of nanoparticles with spherically shaped metal oxide particles in PPy matrix. The XRD pattern indicated a decrease in amorphous domain of PPy with increase in loading of nanoparticles. The higher thermal stability and glass transition temperature of polymer nanocomposites than that of pure PPy were revealed from the TGA and DSC respectively. The dielectric properties, DC and AC conductivity of nanocomposites were much higher than PPy and these electrical properties increases with the loading of nanoparticles. The nanocomposites showed an enhancement in sensitivity towards ammonia gas detection than PPy.  相似文献   

13.
One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers.  相似文献   

14.
We report on the synthesis of a metal–polymer composite material using an interfacial polymerization approach. The advantage of this approach is to form an intimate contact be‐tween the metal and polymer, which is an important param‐ eter for the synthesis of a nanocomposite material. It was found that polymerization of o‐phenylenediamine (PDA) us‐ing HAuCl4 as an oxidizing agent leads to the formation of poly‐PDA with a fiber‐like morphology, while the reduction of HAuCl4 results in the formation of well dispersed and sta‐bilized gold nanoparticles within the polymer matrix. The synthesis was carried out at the organic–aqueous interface. The resultant composite material was purely hydrophilic in nature and deposited at the aqueous fraction of the reaction medium. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The magnetic properties of diluted films composed of nanocomposite Co-CoO nanoparticles (of ~8 nm diameter) dispersed in a Cu matrix have been investigated. The nanoparticles were formed in an aggregation chamber by sputtering at different Ar/O2 partial pressures (0?C0.015). The exchange-bias properties appear to be insensitive to the amount of O2 during their formation. However, the temperature dependence of the magnetization, M(T), exhibits two different contributions with relative intensities that correlate with the amount of O2. The magnetic results imply that two types of particles are formed, nanocomposite Co-CoO (determining the exchange-bias) and pure CoO, as confirmed by transmission electron microscopy observations. Importantly, as the O2 partial pressure during the sputtering is raised the number of nanocomposite Co-CoO nanoparticles (exhibiting exchange-bias properties) is reduced and, consequently, there is an increase in the relative amount of pure, antiferromagnetic CoO particles.  相似文献   

16.
The dielectric properties and electrical conductivity of the composite material, which was prepared by incorporating the P(VDF60/Tr40) copolymer into the porous glass matrix (the average pore diameter is approximately equal to 320 nm), and the bulk sample of the P(VDF60/Tr40) copolymer have been investigated in the temperature range 290–440 K. It is revealed that the incorporated material is characterized by an increase in the melting temperature and a considerable decrease in the temperature at which the ferroelectric phase formed in polymer inclusions becomes unstable. It is shown that charge transfer in the composite material occurs predominantly through channels filled with the polymer.  相似文献   

17.
This work reports the preparation of hybrid nanoparticles with magnetic and fluorescent properties. The material is based on magnetite nanoparticles (NPs) coated with fluorophore methylene blue (MB). The synthesis of a multifunctional material with magnetic and fluorescent features is carried out in a single step by electrooxidation. The effect of the presence of methylene blue in the synthetic medium is discussed. The presence of MB polymer at the NP surface is demonstrated with visible UV, infrared and Raman spectroscopy. The NPs morphology, structure and size are determined by transmission electron microscopy (TEM) and X-ray diffraction. The magnetic properties are measured with a vibrating sample magnetometer (VMS). In overall, the results show that magnetite NPs generated electrochemically in the presence of MB present a core/shell structure, being the NP at the core surrounded by methylene blue polymer, leading to a nanocomposite or hybrid material.  相似文献   

18.
Poly (vinyl alcohol)/poly (ethylene oxide) (PEO/PVA) blends were modified by gamma irradiation in the presence of acrylic acid (AAc) monomer. The modified PVA/PEO blends were then complexed with silver nitrate salt and lithium trifluoromethanesulfonate. Transmission electron microscopy was used to determine the distribution as well as the particle size of the silver nanoparticles (NP) formed in the matrix. The UV–vis absorbance spectra of the prepared grafted nanocomposite membranes confirmed the formation of Ag NP based on their surface plasmon band at 438?nm. The electrical properties of the blended electrolyte polymer films were characterized and discussed.  相似文献   

19.
Magnetic hydrogel composites are promising candidates for a broad field of applications from medicine to mechanical engineering. Here, surface-attached composite films of magnetic nanoparticles (MNP) and a polymeric hydrogel (HG) were prepared from magnetic iron oxide nanoparticles and a carboxymethylated dextran with photoreactive benzophenone substituents. A blend of the MNP and the dextran polymer was prepared by mixing in solution, and after spin-coating and drying the blend film was converted into a stable MNP-HG composite by photocrosslinking through irradiation with UV light. The bulk composite material shows strong mobility in a magnetic field, imparted by the MNPs. By utilizing a surface layer of a photoreactive adhesion promoter on the substrates, the MNP-HG films were covalently immobilized during photocrosslinking. The high stability of the composite was documented by rinsing experiments with UV-Vis spectroscopy, while surface plasmon resonance and optical waveguide mode spectroscopy was employed to investigate the swelling behavior in dependence of the nanoparticle concentration, the particle type, and salt concentration.  相似文献   

20.
A new method is proposed for synthesizing metallic nanoparticles in a polymer matrix. These nanoparticles are synthesized during thermal vacuum evaporation of a metal (4.8 × 10−6 g/cm2) onto the surface of viscousfluid epoxy resin (at a viscosity of 20–120 Pa s) having room temperature, which is well below the glass transition temperature of the polymer. As a result, epoxy resin layers containing silver nanoparticles in their volume form; these nanoparticles are studied by transmission electron microscopy and optical absorption spectroscopy. Various types of disperse structures formed by metallic nanoparticles in the polymer are detected. The morphology of the composite material is found to be controlled by the polymer viscosity and the metal deposition time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号