首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic properties of cobalt ferrite nanoparticles dispersed in a silica matrix in samples with different concentrations (5 and 10 wt% CoFe2O 4) and same particle size (3 nm) were studied by magnetization, DC and AC susceptibility, and Mossbauer spectroscopy measurements. The results indicate that the particles are very weakly interacting. The magnetic properties (saturation magnetization, anisotropy constant, and spin-canting) are discussed in relation to the cation distribution.  相似文献   

2.
Iron oxide colloidal nanomagnets generate heat when subjected to an alternating magnetic field. Their heating power, governed by the mechanisms of magnetic energy dissipation for single-domain particles (Brown and Néel relaxations), is highly sensitive to the crystal size, the material, and the solvent properties. This study was designed to distinguish between the contributions of Néel and Brownian mechanisms to heat generation. Anionic nanocrystals of maghemite and cobalt ferrite, differing by their magnetic anisotropy, were chemically synthesized and dispersed in an aqueous suspension by electrostatic stabilization. The particles were size-sorted by successive electrostatic phase separation steps. Parameters governing the efficiency of nanomagnets as heat mediators were varied independently; these comprised the particle size (from 5 to 16.5 nm), the solvent viscosity, magnetic anisotropy, and the magnetic field frequency and amplitude. The measured specific loss powers (SLPs) were in quantitative agreement with the results of a predictive model taking into account both Néel and Brown loss processes and the whole particle size distribution. By varying the carrier fluid viscosity, we found that Brownian friction within the carrier fluid was the main contributor to the heating power of cobalt ferrite particles. In contrast, Néel internal rotation of the magnetic moment accounted for most of the loss power of maghemite particles. Specific loss powers were varied by 3 orders of magnitude with increasing maghemite crystal size (from 4 to 1650 W/g at 700 kHz and 24.8 kA/m). This comprehensive parametric study provides the groundwork for the use of anionic colloidal nanocrystals to generate magnetically induced hyperthermia in various media, including complex systems and biological materials.  相似文献   

3.
The magnetic properties of maghemite (gamma-Fe2O3) cubic and spherical nanoparticles of similar sizes have been experimentally and theoretically studied. The blocking temperature, T(B), of the nanoparticles depends on their shape, with the spherical ones exhibiting larger T(B). Other low temperature properties such as saturation magnetization, coercivity, loop shift or spin canting are rather similar. The experimental effective anisotropy and the Monte Carlo simulations indicate that the different random surface anisotropy of the two morphologies combined with the low magnetocrystalline anisotropy of gamma-Fe2O3 is the origin of these effects.  相似文献   

4.
Wang XY  Wang ZM  Gao S 《Inorganic chemistry》2008,47(13):5720-5726
The magnetic properties of Co(N 3) 2(4acpy) 2 have been thoroughly reexamined on both powder and well-oriented single crystal samples. This azido-bridged cobalt compound of (4, 4) layer shows a weak-ferromagnetic state below T C = 11.2 K. The magnetic axes were determined to be along the crystallographic a*, b, and c axes for the monoclinic space group P2 1/c. The easy axis lies along the b-axis, the canting is along the a*-axis, and the hard axis is along the c-axis. Strong anisotropy due to the oriented moments in the ordered state and/or the single-ion anisotropy of Co (2+) exists in the whole temperature range from 2 to 300 K. Below T C, very big spontaneous magnetization was observed and was attributed to the very big canting angle (15 degrees at 2 K). A possible spin configuration was then proposed to explain the experimental results. The origin of the big spin canting was discussed, and a weak-ferromagnetic approach toward molecular magnets with big spontaneous magnetization was proposed accordingly.  相似文献   

5.
Rare earth composite cobalt ferrite ionic magnetic fluids were prepared by precipitation in the presence of Tri-sodium citrate. The sample phase, structure and particle sizes were determined by X-ray diffraction transmission and electron microscopy. It is clear that the particles appear as variously sized balls, Cobalt ferrite with sizes of 12-15 nm, Dysprosium cobalt ferrite and Yttrium cobalt ferrite with sizes of 6-8 nm. By adding rare earth ions, the average diameter of the magnetic nanoparticles was decreased. The decrease in diameter was explained using a micro-model of rare earth modification. The effect of rare earth ion modification on the saturation magnetization and magnetic induction of magnetic fluids was carried out using a Gouy magnetic balance and a spectrophotometer. The result shows that saturation magnetization and magnetic induction can be improved by adding Dy3+. By adding Y3+, magnetic induction was increased. However, the saturation magnetization then decreased. A theory of the mechanism of rare earth ion modification is discussed in detail.  相似文献   

6.
The thermal decomposition of cobalt formate in a flow of an inert gas led to the formation of cobalt nanoparticles in pores of various substrates (silica gel, alumina, activated carbon, and montmorillonite). Electron microscopic studies showed that the particle-size distribution of cobalt depended on the external magnetic field strength; the average particle size and distribution variance decreased as the field strength increased. It was assumed that the external magnetic field affected the nucleation constant of cobalt nanoparticles. Original Russian Text ? P.A. Chernavskii, V.I. Zaikovskii, G.V. Pankina, N.S. Perov, A.O. Turakulova, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 3, pp. 586–589.  相似文献   

7.
Nano-magnetic magnesium ferrite particles were synthesized by a simple and cost-effective method using different ratios between Mg/Fe precursors and fuel. Significant effects of these ratios on the crystalline phases, crystallite size, particle size, lattice constant, morphological and magnetic properties of the as-synthesized nano-particles have been investigated. Phase evolution, morphological and magnetic characteristics were determined by XRD, SEM, EDX and VSM techniques. The results obtained revealed that the as-prepared Mg ferrite nano-particles have the nanometer size and partially inverse spinel structure. Nano-structured magnesium ferrite spinel has been synthesized with various cyrystallite sizes ranging from 8 to 66 nm. Room temperature magnetization results showed that the magnetic properties of Mg ferrite nano-particles depend upon their size and crystallinity. The saturation magnetization for the sample having the highest crystallite size was 32.85 emu/g.  相似文献   

8.
Pure maghemite nanopowders made up of nanocrystals with average size of 19 nm was prepared by a simple sol–gel self combustion process. The gel pH and the primer temperature turned out the key parameters for the obtaining of the maghemite phase, that often is accompanied by the most thermodynamically stable hematite. Pure maghemite was achieved only with a gel pH value of 7 and with a primer temperature between 290 and 325 °C. XRD and IR pointed out the formation of maghemite with tetragonal structure and HRTEM indicated the high degree of crystallinity of the powder. Mossbauer measurements allowed to confirm the presence of maghemite phase with Fe(octa):Fe(tetra) ratio of 1.62 which is very close to the theoretical value and the presence spin canting strongly dependent on applied magnetic field. This picture is confirmed by dc magnetic measurements.  相似文献   

9.
Nickel ferrite nanoparticle is a soft magnetic material whose appealing properties as well as various technical applications have rendered it as one of the most attractive class of materials; its technical applications range from its utility as a sensor and catalyst to its utility in biomedical processes. The present paper focuses first on the synthesis of NiFe2O4 nanoparticles through co-precipitation method resulting in calcined nanoparticles that were achieved at different times and at a constant temperature (773 k). Afterward, they were dispersed in water that was mixed by chitosan. Chitosan was bonded on the surface of nanoparticles by controlling the pH of media. In order to assess the structural and magnetic properties of nanoparticles, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) analyses were conducted at room temperature. As per the results of XRD analysis, the pure NiFe2O4 was synthesized. Additionally, nanoparticles grew in size by extending the calcination process duration. TEM micrographs were used to determine the size and shape of particle; the obtained results indicate that the particle size was in a range of 17–30 nm and of a circular shape. The proper chitosan covering was also indicated by FTIR results. The VSM analysis also revealed that the saturated magnetization of NiFe2O4 nanoparticles stood in a range of 29 emu/g and 45 Qe. A stable maximum temperature ranging from 30 to 42 was successfully achieved within 10 min. Also, a specific absorption rate of up to 8.4 W/g was achieved. The study results revealed that the SAR parameter of the coated nickel ferrite nanoparticle is more than that of pure nickel ferrite or cobalt ferrite nanoparticles.  相似文献   

10.
Ferro- and ferrimagnetic nanoparticles are difficult to manipulate in solution as a consequence of the formation of magnetically induced nanoparticle aggregates, which hamper the utility of these particles for applications ranging from data storage to bionanotechnology. Nonmagnetic shells that encapsulate these magnetic particles can reduce the interparticle magnetic interactions and improve the dispersibility of the nanoparticles in solution. A route to create uniform silica shells around individual cobalt ferrite nanoparticles--which uses poly(acrylic acid) to bind to the nanoparticle surface and inhibit nanoparticle aggregation prior to the addition of a silica precursor--was developed. In the absence of the poly(acrylic acid) the cobalt ferrite nanoparticles irreversibly aggregated during the silica shell formation. The thickness of the silica shell around the core-shell nanoparticles could be controlled in order to tune the interparticle magnetic coupling as well as inhibit magnetically induced nanoparticle aggregation. These ferrimagnetic core-silica shell structures form stable dispersion in polar solvents such as EtOH and water, which is critical for enabling technologies that require the assembly or derivatization of ferrimagnetic particles in solution.  相似文献   

11.
Nanocomposite core-shell particles that consist of a Sn0 core surrounded by a thin layer of tin oxides have been prepared by thermolysis of [(Sn(NMe2)2)2] in anisole that contains small, controlled amounts of water. The particles were characterized by means of electronic microscopies (TEM, HRTEM, SEM), X-ray diffraction (XRD) studies, photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. The TEM micrographs show spherical nanoparticles, the size and size distribution of which depends on the initial experimental conditions of temperature, time, water concentration, and tin precursor concentration. Nanoparticles of 19 nm median size and displaying a narrow size distribution have been obtained with excellent yield in the optimized conditions. HRTEM, XPS, XRD and Mossbauer studies indicate the composite nature of the particles that consist of a well-crystallized tin beta core of approximately equals 11 nm covered with a layer of approximately equals 4 nm of amorphous tin dioxide and which also contain quadratic tin monoxide crystallites. The thermal oxidation of this nanocomposite yields well-crystallized nanoparticles of SnO2* without coalescence or size change. XRD patterns show that the powder consists of a mixture of two phases: the tetragonal cassiterite phase, which is the most abundant, and an orthorhombic phase. In agreement with the small SnO2 particle size, the relative intensity of the adsorbed dioxygen peak observed on the XPS spectrum is remarkable, when compared with that observed in the case of larger SnO2 particles. This is consistent with electrical conductivity measurements, which demonstrate that this material is highly sensitive to the presence of a reducing gas such as carbon monoxide.  相似文献   

12.
In this work, fabrication of Gd3+ substituted nickel spinel ferrite (NiGdxFe2-xO4) nanoparticles was carried out via co-precipitation route. X-ray powder diffraction (XRD) confirmed the spinel cubic structure of NiGdxFe2-xO4 nanoparticles. XRD data also facilitated to determine the divalent and trivalent metal cations distribution at both A and B sites of the ferrite lattice. Site radii, hopping and bond lengths were also calculated from XRD data. The spectral studies elucidated the formation of cubic spinel ferrite structure as well as stretching vibrations of M–O (metal–oxygen) bond at A and B sites of ferrites, represented by two major bands υ1 and υ2 respectively. FESEM analysis confirmed the irregular morphology of NiGdxFe2-xO4 nanoparticles. EDX spectrographs estimated the elemental compositions. The dielectric attributes were explained on the basis of the Debye-relaxation theory and Koop’s phenomenological model. At higher applied frequencies (AC) no prominent dielectric loss was observed. Magnetic parameter variations can be attributed to the substitution of the rare earth cations having larger ionic radii as compared to the radii of Fe3+ ions. Moreover, spin canting, magneto-crystalline anisotropy and exchange energy of electrons also helped in magnetic evaluation. Due to small coercivity values NiGdxFe2-xO4 nanoparticles can be employed significantly in high-frequency data storage devices.  相似文献   

13.
Stable CoFe(2)O(4) nanoparticles have been obtained by co-precipitation using a microwave heating system. Transmission electron microscopy images analysis shows an agglomeration of particles with an average size of about 5 nm, and X-ray diffraction reveals the presence of a pure ferrite nanocrystalline phase. X-ray photoelectron spectroscopy and thermal gravimetric analysis show the presence of organic matter in the range of about 16 wt%. The magnetic response in DC fields is typical for an assembly of single-domain particles. The measured saturation magnetization is slightly larger than the bulk value, probably due to the presence of small amounts of Co and Fe. AC magnetization data indicate the presence of magnetic interactions between the nanoparticles.  相似文献   

14.
Crystallographic, microstructural and magnetic properties of NiFe2O4 nanoparticles synthesized by precipitation from nonaqueous solutions have been studied in the work. The transmission electron microscopy studies reveal particle sizes ∼5 nm for the as-prepared particles which increase up to ∼20 nm upon annealing at 500 °C. Quasistatic magnetic measurements show superparamagnetic behavior with blocking temperature below room temperature for both the as-prepared and annealed particles. Characteristic magnetic parameters of the particles including average magnetic moment of an individual nanoparticle and effective anisotropy constant have been determined. The specific loss power which is released on the exposure of an ensemble of synthesized particles to an electromagnetic field is calculated and measured experimentally.  相似文献   

15.
"Nanoparticle ZnO was synthesized in non-aqueous medium. UV adsorption spectra were measured and effective mass model was used to calculate particle size in situ. A technique method named as supersaturation control growth was developed, which dealt with addition of nanoparticle suspension with small size to another suspension with big size. As a result, those small particles completely dissolved and those big ones totally grew because of dissolution degree difference between small particles and the big ones. The particle number of big particle suspension kept being a constant and the growth rate was much higher than Ostwald ripening. Main characteristic of this technique is that size distribution of nanoparticles can be narrowed provided original size difference of two suspension is big enough and original size distribution is not too broad."  相似文献   

16.
Nano-sized nickel ferrite (NiFe2O4) and cobalt ferrite particles (CoFe2O4) were successfully synthesized using a hydrothermal method. Techniques of X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometer, energy dispersive X-ray spectroscopy, vibrating sample magnetometer and transmission electron microscope have been used to characterize and study the as-synthesized NiFe2O4 and CoFe2O4 products. The results showed that the average size of the nickel and cobalt ferrite nanoparticles is smaller than 10 and 100 nm, respectively. The results of magnetic measurement showed that the synthesized NiFe2O4 and CoFe2O4 nanoparticles were superparamagnetic and soft ferromagnetic materials, respectively. Study of adsorption behavior showed that these nanoparticles can act as a good adsorbent for removing Pb2+.  相似文献   

17.
铁酸钴纳米微粒的共沉淀法制备和磁性质(英)   总被引:5,自引:0,他引:5  
The cobalt ferrite nanoparticles were prepared by coprecipitation in the presence of poly (N-vinylpyrrolidone) (PVP) and characterized by XRD, TEM, EDX and magnetometry. XRD results suggest the formation of pure cobalt ferrite. The mean particle sizes of CoFe2O4 samples annealed at 400 ℃ and 600 ℃ were ca. 6 and 25 nm, respectively as obtained by transmission electron microscopy (TEM). The magnetic measurements indicated that nano-particles obtained at 400 ℃ were superparamagnetic while that prepared at 600 ℃ were ferrimagnetic.  相似文献   

18.
Topochemical processes accompanying the preparation of supported cobalt catalysts for Fischer-Tropsch synthesis are systematized. The influence of different factors on the size distribution of Co particles during catalyst preparation is considered. Using a magnetic method, it is possible to estimate the average particle size of the supported metal and to obtain a particle size distribution function. Approaches allowing one to control the type of size distribution function for the Co particles are described using Co/SiO2 catalysts as an example.  相似文献   

19.
Here we report on the synthesis of ultrasmall gamma-Fe2O3 nanoparticles (5 nm) presenting a very narrow particle size distribution and an exceptionally high saturation magnetization. The synthesis has been carried out by decomposition of an iron organometallic precursor in an organic medium. The particles were subsequently stabilized in an aqueous solution at physiological pH, and the colloidal dispersions have been thoroughly characterized by complementary techniques. Particular attention has been given to the assessment of the mean particle size by transmission electron microscopy, X-ray diffraction, dynamic light scattering, magnetic, and relaxometric measurements. The good agreement found between the different techniques points to a very narrow particle size distribution. Regarding the magnetic properties, the particles are superparamagnetic at room temperature and present an unusually high saturation magnetization value. In addition, we describe the potential of these particles as specific positive contrast agents for magnetic resonance molecular imaging.  相似文献   

20.
Isolation of microbial DNA by newly designed magnetic particles   总被引:1,自引:0,他引:1  
Carboxyl group-containing magnetic nonporous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) microspheres and cobalt ferrite nanoparticles modified with alginic acid (natural carboxylic polysaccharide) were used for isolation of microbial DNA of lactic acid bacteria (LAB) from dairy products, lyophilised cell cultures, and bacterial colonies grown on hard media, and Trichophyton fungi DNA from lyophilised cells. DNA from the samples with lysed cells was reversibly adsorbed to the particles in the presence of high poly(ethylene glycol) (PEG 6000) and sodium chloride concentrations. The optimal final PEG and NaCl concentrations were 9.1 wt.% and 2.0 M, respectively. The adsorbed DNA was released from the particles in low ionic strength TE buffer. The quality of isolated DNA was checked by PCR amplification. Moreover, PCR amplicons were isolated on cobalt ferrite nanoparticles modified with alginic acid and checked by restriction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号